访问计数 370579 (自2016年5月)
11792?1632498216
huiminlu TO  NuBot Research Team | 组织文章
发布时间:10/17/2016 08:43

This video is the accompanying video for the following paper: Huimin Lu, Junhao Xiao, Lilian Zhang, Shaowu Yang, Andreas Zell. Biologically Inspired Visual Odometry Based on the Computational Model of Grid Cells for Mobile Robots. Proceedings of the 2016 IEEE Conference on Robotics and Biomimetics, 2016.

Abstract: Visual odometry is a core component of many visual navigation systems like visual simultaneous localization and mapping (SLAM). Grid cells have been found as part of the path integration system in the rat's entorhinal cortex, and they provide inputs for place cells in the rat's hippocampus. Together with other cells, they constitute a positioning system in the brain. Some computational models of grid cells based on continuous attractor networks have also been proposed in the computational biology community, and using these models, self-motion information can be integrated to realize dead-reckoning. However, so far few researchers have tried to use these computational models of grid cells directly in robot visual navigation in the robotics community. In this paper, we propose to apply continuous attractor network model of grid cells to integrate the robot's motion information estimated from the vision system, so a biologically inspired visual odometry can be realized. The experimental results show that good dead-reckoning can be achieved for different mobile robots with very different motion velocities using our algorithm. We also implement a full visual SLAM system by simply combining the proposed visual odometry with a quite direct loop closure detection derived from the well-known RatSLAM, and comparable results can be achieved in comparison with RatSLAM.

回复
Cancel Reply