
Falcons team update

Presentation Portugal
Workshop 2015

Contents
• ASML’s mission for Robocup
• Software updates
• New vision system

Mission

Vision for 2015-2016
• Inside ASML there is a growing awareness for the Falcons team, resulting in

request to demonstrate the robots on job fairs and schools
• The Turtle 5k hardware is not used to its limit yet and winning multiple

games should be possible with current hardware
• New hardware should be available before current hardware becomes the

limit

This results in:
• Creation of a new demo team with dedicated demo software
• Optimization of current hardware and software, e.g ball handling and

shooter/kicker
• Writing and execution of test plans
• Start development new hardware

Team constraints
• All work is done off-hours (evenings)
with volunteers

• Team consists of approx. 34
volunteers

• Team looks big, but is “only” 5 FTEs

Upcoming activities
• Dutch open in March 2016
• About 9 demo events in H1 2016
• Mini games against TU/e and VDL
robot sports

• WM in Leipzig

Software updates

Philosophies to program by 1/2
• Share code with other teams

• KISS-principle

• Be future proof
• ROS interface and types decoupling

• Behavior-driven development
• Make use of continuous integration

Philosophies to program by 2/2
• Create software that is

• Scalable
• Maintainable
• Testable

• Actively rework and refactor

• Document code with DoxyGen

• Maintain wiki pages

General technical notes
what why status
Migrated SVN to GIT Development efficiency (branching) Done!

Upgraded to Ubuntu 14 and
ROS jade

Use latest and greatest packages Done!

Isolate SW interfaces (ROS,
UDP) from internal library

Future proof; improved code re-usability Mostly
done!

Reduce SW latency Improved responsiveness In progress

Replace python with C++ Improved performance / reduced CPU load Mostly
done!

Rewritten firmware from
scratch

To solve China “drunken robots”; code
maintainability; adding new features

Testing

Planning to use Gazebo Replace custom with advanced out-of-the-
box simulation; visualization capabilities

Not started

Overall architecture

Teamplay (strategy/reasoning)

• Inspired by CAMBADA’s strategy
software architecture

• Teamplay module (node)
decoupled from ROS; therefore
interchangeable in future

• Added layering to prevent code
explosion

• Naming in line with other teams

• Convert Teamplay code from old
(Hefei) to new (Leipzig)

Vision system

Vision system - Contents

• Turtle5k vision
• Requirements
• Standard solution
• Do it yourself
• Proof of concept
• Conclusion
• The future

Turtle 5k vision
• Field 18x12 meters

l Camera radius about 4.5 meters
l Edge color distortion from tube
l Edge color distortion from mirror

• Only down view
l Not able to track lobbing balls

• Inefficient use of pixels
l 16:9 to circle view

• Difficult to calibrate
l No homogeneous tangent function
l Optical/mechanical

• Difficult to determine distance

Down view

Increased view

Requirements
• 360x120 degrees
• 60 FPS
• Resolution 800x600 per camera
• Low latency less then 5ms
• Synchronized (global) shutter less then 1ms
• Low optical distortion (< 80 degrees per camera)
• Total size assembly (h<15cm, d<20cm)
• Communication Interface
• Linux / OpenCV compatible
• Availability
• Affordable (less then €1000 per robot)

Standard solution
Most of them are

l Large
l Expensive
l No streaming (SD card)
l Limited vertical view
l Closed design

Panone 360x360
l 36 camera's (45 degrees each)
l €1499, streaming expected in 2018

Sphericam 360x360
l 6 camera's (90 degrees each)
l 60 FPS
l Pre-order $1999, expected January 2016

Do it yourself
Standard x86-64 interface

Genius Widecam F100
l 1080p @ 30 FPS
l 120 x 65 degrees
l 8 x 45 = 360 degrees (vertical)
l 8 x €40

Unknowns
l Bandwidth (USB 2.0)
l Latency
l Shutter control
l 30 FPS
l Camera control from Linux

Visible area

Proof of concept
Hardware

l 2x Genius Widecam F100
l 3x Logitech C525
l 3x Streams
l 4 x i7-3540m @ 3GHz

Synchronization
l Each camera/stream in thread
l Use create – join to synchronize

Results
Success

l 5 camera's 800x600
l 30 FPS
l Camera control

Fail
l Maximal 1 camera per USB hub
l Synchronization error > 5ms

Synchronization fan test

Shutter synchronization
l 250ms per turn
l 250*20/360 = 14ms

Conclusion
l Closed design
l Dead end

The future
Smart-phone camera solutions

Raspberry Pi camera
Ardocam added shutter control

Multiple camera's to FPGA

Stereoscopy

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

