Modelling an Attacking Strategy Based on Dynamic Path Planning

Stefan Jakob

Distributed Systems Universität Kassel

23. November 2015

Goals	Dynamic Path Planning	Attacking Strategy	Conclusion	**
				DISTRIBUTED SYSTEMS

Contents

Goals

Dynamic Path Planning

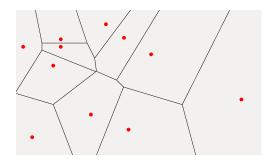
Modelling an Attacking Strategy

Conclusion

Goals ●	Dynamic Path Planning 000000	Attacking Strategy	Conclusion O	~~~
				DISTRIBUTED SYSTEMS

Goals

- Dynamic influence of path planning by ALICA behaviors
- Adapting the heuristic of the A*-Algorithm
- Expandable Attacking Strategy


Goals o	Dynamic Path Planning	Attacking Strategy	Conclusion	**
				DISTRIBUTED SYSTEMS

The Computational Geometry Algorithms Library

- Extensive collection of algorithms from the field of Computational Algebra
- Supports both Voronoi and Delaunay diagrams
- Dynamic inserting of Voronoi centers in already created Voronoi Diagram
- Avoidance of degenerate edges and cells
- Partially poor documentation
- Algorithms not always clearly understandable

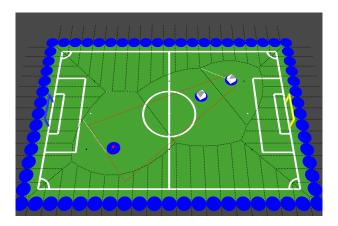
Goals O	Dynamic Path Planning	Attacking Strategy	Conclusion O	~~
				DISTRIBUTED SYSTEMS

Voronoi Diagram

 Division of space into Voronoi cells by a set S of Voronoi centers

$$VorR(p, S) = \bigcap_{q \in S \setminus \{p\}} \{x \in \mathbb{R}^2 : |p - x| < |q - x|\}$$

Goals O	Dynamic Path Planning	Attacking Strategy	Conclusion O	**
				DISTRIBUTED SYSTEMS


Path Planning

- Path search with the help of an adjusted A*-Algorithm
- Division into several steps in order to respond to various situations
- Calculates new destination if actual destination unreachable
- Influencable by ALICA behaviors

Goals	Dynamic Path Planning	Attacking Strategy	Conclusion	~~
			<u> </u>	DISTRIBUTED SYSTEMS

Procedure of Path Planning

1. Verification of the corridor to the target

Goals	Dynamic Path Planning	Attacking Strategy	Conclusion	**
			÷	DISTRIBUTED SYSTEMS

Procedure of Path Planning

- Path Planning for the requested destination by using the A*-Algorithm
- 3. If destination unreachable, planning to point near the target
- 4. If the agent is surrounded by obstacles, calculating a target point between the most distant obstacle and the agent

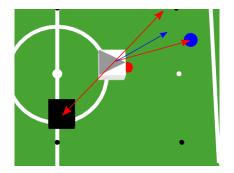
Goals	Dynamic Path Planning	Attacking Strategy	Conclusion	**
~			· ·	DISTRIBUTED SYSTEMS

Dynamic adding and removing obstacles

Influencing the path planning through artificial obstacles

Goals	Dynamic Path Planning	Attacking Strategy	Conclusion	**
0	000000	0000	0	DISTRIBUTED SYSTEMS

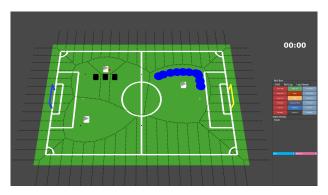
Modelling an Attacking Strategy


Distribution of attacking strategy in different ALICA behaviors

- Shielding the ball
- Searching for a pass point
- Fast pass

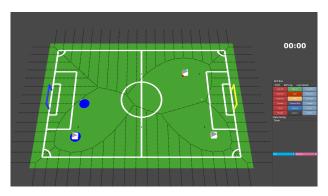
Shielding the Ball

Calculation of the point for aligning the robot



Rotation of the robot around the ball

Goals O	Dynamic Path Planning 000000	Attacking Strategy	Conclusion O	~~
				DISTRIBUTED SYSTEMS


Searching for a pass point

Checking whether Pass is possible

Goals	Dynamic Path Planning	Attacking Strategy	Conclusion	DISTRIBUTED SYSTEMS
O	000000	000●	O	
Fast	Pass			

Pass player chooses best pass point and receiver (marked in blue)

Summary

- Insertion and removal of obstacles affects the runtime of ALICA behaviors only slightly
- Runtime of planning a path has depends on amout of obstacles
- Runtime of ALICA behaviours is slightly affected
- Robot successfully avoid obstacles and shield the ball from obstacles

Modelling an Attacking Strategy Based on Dynamic Path Planning

Stefan Jakob

Distributed Systems Universität Kassel

23. November 2015

