

Abstract—Originated from Robot World Cup Middle Size

League (RoboCup MSL), this paper discusses the design and

implementation of a robot soccer simulation system based on

ROS and Gazebo. Its aim is to test multi-robot collaboration

algorithms. After building the Gazebo models, a model plugin is

written to realize the robot’s basic motions including

omnidirectional locomotion, ball-dribbling and ball-kicking. To

integrate the model plugin with the real robot code, ROS nodes

related to low-level controllers are replaced with the model

plugin. In addition, nodes related to behavior control and global

information processing are modified to corresponding model

plugins as well. Finally, multiple robot models are spawned into

a simulation world and collaborate with others. We have

already used the simulation system to successfully test and

debug the multi-robot collaboration algorithms for MSL.

Furthermore, after minor modifications, it can also be applied

to the research of other multi-robot systems. Therefore, the

simulation system is sufficient in simulating multi-robot

collaboration.

Index Terms—simulation system, robot soccer, multi-robot,

Gazebo, ROS, RoboCup.

I. INTRODUCTION

RoboCup [1] is an annual international competition and
academic activity for the development of artificial intelligence,
intelligent robotics and related fields. Currently it has five
major competition domains, each with several leagues.
Among them, RoboCup Soccer Middle Size League (MSL) [2]
is the closest to real soccer game in terms of competition rules
and intensity. One of the fundamental research issues of MSL
is multi-robot collaboration [3, 4].

Since testing multi-robot collaboration algorithms on real
robots is costly and difficult, an appropriate simulation system
is necessary. In fact, there are many simulators either
commercially available or open source. One of the typical
simulators is Webots [5]. It is a mobile robotics simulation
software that features complex robotic setups, customization
of robot properties and large user base. But it is not open
source. Soccer Server [7], in the beginning, is the official
simulator of RoboCup. It is later improved and renamed as
rcsoccersim. Another simulator, Übersim [6], developed by
Carnegie Mellon University, is designed as a robot
development tool for the RoboCup Small Size League. It
provides a high-fidelity simulation environment and
reconfigurable robot classes. But the robot models can only be

Weijia Yao, Wei Dai, Junhao Xiao, Huimin Lu and Zhiqiang Zheng are

with College of Mechatronics Engineering and Automation, National

University of Defense Technology, China (e-mail:

weijia.yao.nudt@gmail.com, 975475085@qq.com, junhao.xiao@ieee.org,

lhmnew@nudt.edu.cn, zqzheng@nudt.edu.cn). Weijia Yao is the

corresponding author.

parameterized at compile time. Some teams, such as WinKit
[8] from Kanazawa Institute of technology, develop their own
simulation systems for their robots. But most of these
simulators are only applicable to specific robots.

Apart from two-dimensional simulators, a generic
three-dimensional physical simulation system named Spark [9]
is adopted by RoboCup Simulation League. Another
simulation system used in RoboCup is SimRobot [10], which
supports rigid body dynamics and a variety of sensors and
actuators. However, these two simulators are not widely used
in real games like MSL.

In this paper, the open source simulator Gazebo [11] is
adopted to simulate the motions of a soccer robot. The main
reason we use Gazebo as the simulator is that Gazebo offers a
convenient interface with Robot Operating System (ROS)
[12], which is used in our real robot code. In addition, Gazebo
also features 3D simulation, multiple physics engines, high
fidelity models, huge user base and etc. Therefore, the
simulation system based on ROS and Gazebo can take
advantage of many state-of-the-art robotics algorithms and
useful debugging tools built in ROS. It can also benefit from
or contribute to the active development communities of ROS
and Gazebo in terms of code reuse and project
co-development.

The remainder of this paper is organized as follows.
Section II introduces the creation of simulation models and a
simulation world. Section III presents the realization of a
single robot’s basic motions by a Gazebo model plugin.
Furthermore, in section IV, the model plugin is integrated
with the real robot code so that several robot models are able
to reproduce real robots’ behavior. Finally, in section V, three
tests are conducted to validate the effectiveness of the
simulation system. Section VI concludes the paper and
summarizes the future work.

II. SIMULATION MODELS AND A SIMULATION WORLD

Gazebo models, which consist of links, joints(optional),
plugins(optional) and etc., are specified by SDF(Simulator
Description Format) [13] files whereas a simulation world,
which determines lighting, simulation step size, simulation
frequency and other simulation properties, is specified by a
world file.

A. Simulation models

Models used in this simulation system include the robot
(NuBot [14]) model, the soccer field model and the soccer ball
model.

1) Robot model: It is composed of a chassis link without

any joint. TABLE I lists some important properties specified

in the robot model SDF file. Besides, another two important

A Simulation System Based on ROS and Gazebo for

RoboCup Middle Size League

Weijia Yao, Wei Dai, Junhao Xiao, Huimin Lu, Zhiqiang Zheng

properties, mesh and collision that are used for visualization

and collision detection respectively, are illustrated in Fig. 1.

They are drawn by open source 3D drawing tool SketchUp

[15]. Note that the collision element is not a duplicate of the

model’s exterior but a simplified cylinder with the same base

shape and height as the model exterior. This simplification

does not affect the simulation effect but improves the

simulation speed. For the same purpose, we do not model the

real robot’s physical mechanisms, such as omnidirectional

locomotion, ball-dribbling, ball-kicking and omni-vision

camera mechanisms, and therefore there is no need for any

joint in this model. The simplification can be justified by the

simulation system’s design purpose: to test multi-robot

collaboration strategies or algorithms. Therefore the emphasis

of the simulation system is on the final effect of robots’ basic

motions but not the complicated physical processes involved.

The physical mechanisms’ capabilities can be realized by a

Gazebo model plugin that will be discussed in Section III.

TABLE I.
PROPERTIES OF THE ROBOT MODEL

Property name Value

Mass [11] 31 kg

Moment of inertia [11]
Izz = 2.86 kg•m2 ,

Ixx= Iyy= Ixy= Ixz= Iyz=0

Friction coefficient 0.1

Velocity decay Linear: 0. Angular: 0

Model plugin nubot_gazebo

Fig. 1. Mesh and collision properties of the robot model. (a) Mesh property;

(b) collision property.

2) Soccer field model: According to 2015 RoboCup MSL

competition rules [17], we use SDF file, OGRE [18] material

scripts and images of the goal net, field ground and field lines

to build the soccer field model. The collision elements are

composed of each parts’ corresponding geometry.

3) Soccer ball model: The soccer ball model is built with

the same attributes of a defined FIFA standard size 5 soccer

ball that is played in RoboCup MSL. The pressure inside the

model is neglected and the collision element is a sphere of the

same size of the soccer ball.

TABLE II.
PROPERTIES OF THE SIMULATION WORLD

Property name Value

Physics engine Open Dynamics Engine (ODE) [14]

Max step size 0.007 s

Real time update rate 150 Hz

Gravity -9.8 m/s2

Models to spawn
ground_plane, soccer field, left_goal,

right_goal

B. The Simulation world
The world file specifies the simulation background,

lighting, camera pose, physics engines, simulation step size
and etc. Some important properties of the simulation world
are listed in TABLE II. Finally, a simulation world with three
robots and a soccer ball is created (see Fig. 2).

Fig. 2. The simulation world

III. A SINGLE ROBOT’S BASIC MOTIONS REALIZATION

To realize a single robot’s basic motions, a Gazebo model
plugin named “nubot_gazebo” is written. A model plugin is a
shared library that attached to a specific model and inserted
into the simulation. It can obtain and modify the states of all
the models in a simulation world. We will discuss the
“nubot_gazebo” model plugin in three parts.

A. Overview of the “nubot_gazebo” plugin
When “nubot_gazebo” plugin is loaded at the beginning

of a simulation process, its tasks include:

 Obtaining parameters of the soccer ball model’s name,

ball-dribbling distance threshold, ball-dribbling angle

threshold and etc. from ROS parameter server.

 Setting up ROS publishers, subscribers, service servers

and a dynamic reconfigure server.

 Binding model plugin update function that runs in every

simulation iteration.

Fig. 3. The computation graph of the model plugin

The model plugin starts running automatically when a
robot model is spawned. For example, when the robot model
“bot1” is spawned, a computation graph is created and
visualized by ROS tool rqt_graph (see Fig. 3). In Fig. 3, there
is only one node called “/gazebo”, which publishes
(represented by an arrow pointing outward) and subscribes
(represented by an arrow pointing inward) several topics
enclosed by small rectangles. The topics inside the “gazebo”
namespace are created by a ROS package called
gazebo_ros_pkgs, which provides wrappers around the
stand-alone Gazebo and thus enables Gazebo to make full use
of ROS messages, services and dynamic reconfigure. Those
inside the “bot1” namespace are created by the model plugin.
All the topic names are self-explanatory. For instance,

messages on /bot1/nubotcontrol/velcmd topic are used to
control the robot model’s velocity.

Although the physical mechanism of the omni-vision
camera is not simulated, the robot model is still able to obtain
information of other models’ positions and velocities by
subscribing to the topic /gazebo/model_states. In addition,
ball-dribbling and ball-kicking are realized by calling
corresponding ROS services (not illustrated in Fig.3). They
will be discussed in the following part.

B. Motions realization
A single robot’s basic motions include omnidirectional

locomotion, ball-dribbling and ball-kicking. For better
explanation, two reference frames are created: the world
frame denoted by the subscript w and the robot body frame
denoted by the subscript r as shown in Fig. 4. The xr- axis is in
the ball-kicking direction. Its corresponding unit vector is

denoted by KD , of which the representation in the robot body

frame is [10 0]T

KrD and in the world frame
KwD :

w =K wr KrD R D (1)

where
wrR is the rotation matrix representing the orientation

of the robot body frame r relative to the world frame w. TD

is the unit vector pointing from the geometry center of the

robot to that of the soccer ball.

1) Omnidirectional locomotion: Gazebo’s built-in

functions SetLinearVel and SetAngularVel are used to make

the robot model move in any direction given any translation

vector and rotation vector respectively.

2) Ball-dribbling: If the distance between the robot and

the soccer ball is within a distance threshold and the angle

between KD and TD is also within an angle threshold, then

the dribble condition is satisfied and the robot is able to

dribble the ball. Under this condition, to realize

ball-dribbling, the soccer ball’s pose is directly and

continuously set by Gazebo’s built-in function to continually

satisfy the dribble condition. In other words, the vector

pointing from the geometry center of the robot to that of the

soccer ball (rsP) is set as follows:

 *rs KP gap D (2)

where gap is the specified distance (smaller than the dribble

distance threshold) between the robot and the soccer ball.

3) Ball-kicking: Similarly, ball-kicking is realized by

giving the soccer ball a specific velocity at the start of the

kicking process. There are two ways of kicking: the ground

pass and the lob shot. In the ground pass, the soccer ball does

not lose contact with the ground so its initial velocity vector

is calculated in the xw-yw plane:

 0gp Kv v D (3)

where
0v is the desired initial speed. As for the lob shot, the

soccer ball is kicked into the air so its speed in the z-direction

should also be taken into account. Since the air resistance is

trivial compared with the gravity effect, it is reasonable to

assume that the ball’s flight path is a parabola. For

convenience, a planar frame X-Y of which the origin is the

center point of the soccer ball is set up. Its X- and Y-axes are

parallel to xr- and zr- axes respectively as shown in Fig. 4.

Fig. 4. Reference frames and notations for motions realization

The following calculation is discussed in this planar X-Y
frame. The soccer ball is regarded as a particle so the equation
of its flight curve is defined by:

 2y ()f x ax bx c (4)

where a, b and c are parameters to be solved. The distance

between the origin and the crosspoint of the X-axis and the

common perpendicular of the X-axis and the goal line is

denoted by d; the goal height is H (measured from the ground

to the lower surface of the horizontal goal pole); the radius of

the ball is r. Let h=H-2r, so when the ball flies through the

point (d, h) this shot is successful. In other words,

(0) 0

()

f x

f x d h

 (5)

Suppose the soccer ball’s velocity along the X-axis
Xv is

constant during the flight, so the displacement along X-axis

is calculated by () Xx t v t and substituted in (4) we obtain:

 2 2() X Xy t av t bv t c (6)

 2''() 2 -Xy t av g (7)

where g is the gravitational constant. Combining with (4),

(5) and (7) we obtain equation (8).

2

2

2

2

0

X

X

g
a

v

h g
b d

d v

c

 (8)

Therefore the soccer ball’s initial velocity in Y-axis is:

0'(t) |Y t Xv y bv (9)

Above all, the initial velocity in the world frame is:

 , , ,y(, ,)ls w X Kw x X Kw Xv v D v D bv (10)

where ,Kw xD and ,yKwD are the x- and y- component

of wKD respectively. In fact, h is given a smaller value in the

simulation to guarantee that the ball will always be shot into

the goal. Note that
Xv has an upper limit given by:

2

b
d

a
 (11)

Combining with (8) and (11) we get this upper limit denoted

by
thresv :

2

X thres

g
v v d

h
 (12)

C. Single robot motions test
To test single robot’s basic motions, four behavior states

are defined as follows: CHASE_BALL, DRIBBLE_BALL
(including two sub-states MOVE_BALL and
ROTATE_BALL), KICK_BALL, RESET and HOME. The
robot model performs these motions following the behavior
states transfer graph as shown in Fig. 5. The test results (see
Fig. 6) prove that the “nubot_gazebo” model plugin realizes
basic motions successfully.

IV. MODEL PLUGIN AND REAL ROBOT CODE INTEGRATION

The “nubot_gazebo” model plugin discussed above has
realized a single robot’s basic motions without the need to
model the real robot’s physical mechanisms. However, in
order to test multi-robot collaboration algorithms, it is
significant to integrate the model plugin with the real robot
code.

In the real robot code, there are seven nodes in total (see
Fig. 7). The five nodes enclosed by shadowed ellipses are
directly related to the robot’s hardware. The other two nodes,
“world_model” node and “nubot_control” node, process
global information and control robot behavior respectively. In
addition, there is a Windows program dubbed Coach that
receives and visualizes information from each robot and sends

basic commands such as game-start, game-stop, kick-off,
corner-ball and etc. via UDP protocol to them in return.

To integrate the real robot code with the model plugin,
those five nodes related directly to hardware should be
replaced with the model plugin. This successful replacement
requires an appropriate interface, in other words, correct ROS
messages-passing and services-calling between them. Finally,
the data flow of the integration of the real robot code and the
model plugin is shown in Fig. 8. There are three noticeable
changes described as follows:

1) “nubot_control” and “world_model” nodes converted

to model plugins: As a result, the namespace has been

changed from “nubot” to “gazebo”. There are two reasons

why “nubot_control” and “world_model” nodes are

converted to model plugins.

The first reason is for model completeness. Because only if

all of the three model plugins are attached to a robot model

can the model simulate the complete behavior of a

corresponding real robot. Therefore, these two nodes should

be converted to model plugins so that they will be loaded

automatically once the robot models are spawned.

The second reason is for name-prefixing. Because all the

robot models use the same model plugins and are created into

one simulation world, they cannot distinguish their own

messages and services from others’. In this case, it is

necessary for each models’ name to be used as a prefix to their

own topic names or service names. Therefore, the simulation

robots can subscribe to their own topics or response to their

own services. These prefixes-the model names-are obtained

by using model plugins.

Fig. 5. Single robot behavior states transfer graph

Fig. 6. Single robot simulation result. (a) Initial state; (b) CHASE_BALL state; (c) DRIBBLE_BALL state; (d) KICK_BALL state;

In addition, the conversion from these nodes to model

plugins is not complicated; the essential method is to inherit

from “ModelPlugin” class and overload the “Load” member

function [21]. However, if “world_model” and

“nubot_control” are not converted to model plugins, an extra

mechanism, such as a well-written bash script, is necessary to

guarantee that they correspond to the appropriate robot

models.

Fig. 7. The data flow graph of the real robot code.

Fig. 8. The data flow graph of the integration of the real robot code and the

model plugin.

2) An intermediary node used for communication between

robots and the Coach: As can be seen in Fig.7 and Fig.8, the

connection between “world_model” and the Coach has been

changed from two full lines to two broken lines, indicating

that the communication is indirect in the latter situation. In

fact, the real robot code uses blocking socket network

communication with the Coach. Thus if several robots are

spawned in a simulation world, only one robot is able to

receive information from the Coach. The solution to the

problem is either using non-blocking socket programming or

using an intermediary node as a bridge. We adopt the latter

method to create a node called “/coachinfo_publisher” to

successfully solve this problem. This node communicates via

UDP protocol with the Coach and then publishes messages

on a specific topic so that each robot can subscribe to it.

3) Gaussian noise: Gaussian noise is added to the position

and velocity information obtained by the robot model to

mimic the real world situation.
Finally, we spawn two robot models “bot1” and “bot2” into

a simulation world and obtain the computation graph as
shown in Fig. 9. Note that all the model plugins are contained
in the “/gazebo” node and the topic names are all prefixed by
corresponding model names.

Fig. 9. The computation graph of the simulation with two robot models

TABLE III.
CONFIGURATION OF TWO COMPUTERS

Operating system and

software
IP address

Subnet
mask

Computer1
Ubuntu 14.04 64 bits;
ROS Indigo; Gazebo 5.0

172.16.53.203 255.255.0.0

Computer2
Windows 7 64 bits;
Visual Studio 2013

172.16.53.220 255.255.0.0

V. MULTI-ROBOT SIMULATION TEST

To test multi-robot simulation, we need two computers,
Computer 1 and Computer 2, connected by a network cable.
Computer 1 is used to run Gazebo and simulation models
whereas Computer 2 is used to run the Coach program. Their
configurations are listed in TABLE III.

Firstly, we test the communication between the model
plugins and the Coach program. In this test, three robot
models and three static obstacles (static rival robots) are
spawned into the simulation world. The test result shows that
the positions of the models are displayed correctly in the
Coach window. And in reverse, the robot models are able to
receive commands from the Coach program. So the
communication is a success.

Secondly, given static obstacles the same as the first test,
we test whether the robot models can make motions
corresponding to the real robot code. The result proves that
the robot models can perform motions as expected.

Lastly, by attaching separate model plugins to the rival
robot models and reversing the reference frames in the
“/nubot_gazebo” plugin, two sides of robot models are able to
compete against each other as shown in Fig. 10.

To sum up, these tests prove that the interface between the
model plugins and the real robot code is successfully realized.
And the simulation system is able to simulate both sides of
robots’ motions.

Fig. 10. Two sides of robot models compete in a soccer game. (a) The initial state of the robot models (black) and the rival robot models (red); (b) three robots

on the right side of the soccer field are chasing the soccer ball; (c) Black robots shoot the goal.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In order to test multi-robot collaboration algorithms of
real robot code, we set up a robot soccer simulation system
using ROS and Gazebo model plugins. This process
comprises of three stages. The first stage is constructing
Gazebo models with visualization, collision elements and
other properties. The second stage is writing a Gazebo model
plugin to realize the basic motions such as omnidirectional
locomotion, ball-dribbling and ball-kicking. The last stage is
to integrate the model plugin with the real robot code. Finally,
the test results manifest that the simulation system is able to
simulate multi-robot collaboration.

Although the simulation system uses NuBot as the robot
model, the design and implementation methods can be widely
applied to other robots as well. Specifically, this simulation
system can be easily adapted for other soccer robots by
modifying corresponding messages and services. Overall, the
simulation system enriches and develops the research of
multi-robot simulation.

B. Future work

Further study will focus on the modeling of
omnidirectional wheels and improvement of the simulation
speed.

ACKNOWLEDGMENT

Our works are supported by National Science Foundation

of China (No.61403409 and No. 61503401) and graduate

school of National University of Defense Technology.

REFERENCES

[1] http://www.robocup2015.org/

[2] Kitano et al., "RoboCup: The Robot World Cup Initiative." in Proc. of

the 1st Int. Conf. on Autonomous agents., pp. 340-347, ACM, 1997

[3] Soetens, Robi et al., "RoboCup MSL-History, Accomplishments,

Current Status and Challenges Ahead." In RoboCup 2014: Robot

World Cup XVIII, pp. 624-635, Springer International Publishing,

2015.

[4] Candea et al., "Coordination in multi-agent RoboCup teams." in

Robotics and Autonomous Systems 36, no. 2 (2001): 67-86

[5] https://www.cyberbotics.com/overview

[6] Browning et al., "Übersim: a multi-robot simulator for robot soccer."

In Proc. of the 2nd Int. joint Conf. on Autonomous agents and

multiagent systems, pp. 948-949. ACM, 2003

[7] Itsuki, Noda. "Soccer server: a simulator of RoboCup.". In JSAI

AI-Symposium 95: Special Session on RoboCup. 1995

[8] http://demura.net/9ode/442.html

[9] Obst, Oliver, and Markus Rollmann. "Spark–a generic simulator for

physical multi-agent simulations." in Multiagent System Technologies,

pp. 243-257. Springer Berlin Heidelberg, 2004.

[10] Laue et al., "SimRobot–a general physical robot simulator and its

application in robocup." in RoboCup 2005: Robot Soccer World Cup

IX, pp. 173-183. Springer Berlin Heidelberg, 2006

[11] Koenig Nathan, and Andrew Howard, "Design and use paradigms for

gazebo, an open-source multi-robot simulator." in Intelligent Robots

and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ

International Conference, vol. 3, pp. 2149-2154. IEEE, 2004

[12] Quigley et al., "ROS: an open-source Robot Operating System."

in ICRA workshop on open source software. 2009. vol. 3, no. 3.2, p. 5

[13] http://sdformat.org/

[14] Yu, Wentao et al., "NuBot team description paper 2010." Proc.

RoboCup 2010 Singapore, CD-ROM (2010).

[15] http://www.sketchup.com/

[16] Cui Qingzhu, “The Modeling and Control Based on the Dynamics for

the Omni-directional Mobile Robot,” M.S. thesis, School of Gratuate,

Nat. Univ. of Def. Tech., Changsha, China, 2012

[17] MSL Technical Committee, “Middle Size Robot League Rules and

Regulations for 2015 Version - 17.2 20141231, 5”, 2015-5-20

[18] http://www.ogre3d.org/

[19] http://opende.sourceforge.net/.

[20] http://wiki.ros.org/gazebo_ros_pkgs

[21] http://gazebosim.org/tutorials?tut=ros_plugins&cat=connect_ros

http://sdformat.org/
http://www.sketchup.com/
http://www.ogre3d.org/

