
 

Abstract—Originated from Robot World Cup Middle Size 

League (RoboCup MSL), this paper discusses the design and 

implementation of a robot soccer simulation system based on 

ROS and Gazebo. Its aim is to test multi-robot collaboration 

algorithms. After building the Gazebo models, a model plugin is 

written to realize the robot’s basic motions including 

omnidirectional locomotion, ball-dribbling and ball-kicking. To 

integrate the model plugin with the real robot code, ROS nodes 

related to low-level controllers are replaced with the model 

plugin. In addition, nodes related to behavior control and global 

information processing are modified to corresponding model 

plugins as well. Finally, multiple robot models are spawned into 

a simulation world and collaborate with others. We have 

already used the simulation system to successfully test and 

debug the multi-robot collaboration algorithms for MSL. 

Furthermore, after minor modifications, it can also be applied 

to the research of other multi-robot systems. Therefore, the 

simulation system is sufficient in simulating multi-robot 

collaboration. 

Index Terms—simulation system, robot soccer, multi-robot, 

Gazebo, ROS, RoboCup. 

I. INTRODUCTION 

RoboCup [1] is an annual international competition and 
academic activity for the development of artificial intelligence, 
intelligent robotics and related fields. Currently it has five 
major competition domains, each with several leagues. 
Among them, RoboCup Soccer Middle Size League (MSL) [2] 
is the closest to real soccer game in terms of competition rules 
and intensity. One of the fundamental research issues of MSL 
is multi-robot collaboration [3, 4]. 

Since testing multi-robot collaboration algorithms on real 
robots is costly and difficult, an appropriate simulation system 
is necessary. In fact, there are many simulators either 
commercially available or open source. One of the typical 
simulators is Webots [5]. It is a mobile robotics simulation 
software that features complex robotic setups, customization 
of robot properties and large user base. But it is not open 
source. Soccer Server [7], in the beginning, is the official 
simulator of RoboCup. It is later improved and renamed as 
rcsoccersim. Another simulator, Übersim [6], developed by 
Carnegie Mellon University, is designed as a robot 
development tool for the RoboCup Small Size League. It 
provides a high-fidelity simulation environment and 
reconfigurable robot classes. But the robot models can only be 
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parameterized at compile time. Some teams, such as WinKit 
[8] from Kanazawa Institute of technology, develop their own 
simulation systems for their robots. But most of these 
simulators are only applicable to specific robots. 

Apart from two-dimensional simulators, a generic 
three-dimensional physical simulation system named Spark [9] 
is adopted by RoboCup Simulation League. Another 
simulation system used in RoboCup is SimRobot [10], which 
supports rigid body dynamics and a variety of sensors and 
actuators. However, these two simulators are not widely used 
in real games like MSL.  

In this paper, the open source simulator Gazebo [11] is 
adopted to simulate the motions of a soccer robot. The main 
reason we use Gazebo as the simulator is that Gazebo offers a 
convenient interface with Robot Operating System (ROS) 
[12], which is used in our real robot code. In addition, Gazebo 
also features 3D simulation, multiple physics engines, high 
fidelity models, huge user base and etc. Therefore, the 
simulation system based on ROS and Gazebo can take 
advantage of many state-of-the-art robotics algorithms and 
useful debugging tools built in ROS. It can also benefit from 
or contribute to the active development communities of ROS 
and Gazebo in terms of code reuse and project 
co-development.   

The remainder of this paper is organized as follows. 
Section II introduces the creation of simulation models and a 
simulation world. Section III presents the realization of a 
single robot’s basic motions by a Gazebo model plugin. 
Furthermore, in section IV, the model plugin is integrated 
with the real robot code so that several robot models are able 
to reproduce real robots’ behavior. Finally, in section V, three 
tests are conducted to validate the effectiveness of the 
simulation system. Section VI concludes the paper and 
summarizes the future work.  

II. SIMULATION MODELS AND A SIMULATION WORLD 

Gazebo models, which consist of links, joints(optional), 
plugins(optional) and etc., are specified by SDF(Simulator 
Description Format) [13] files whereas a simulation world, 
which determines lighting, simulation step size, simulation 
frequency and other simulation properties, is specified by a 
world file.  

A. Simulation models 

Models used in this simulation system include the robot 
(NuBot [14]) model, the soccer field model and the soccer ball 
model.  

1) Robot model: It is composed of a chassis link without 

any joint. TABLE I lists some important properties specified 

in the robot model SDF file. Besides, another two important 
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properties, mesh and collision that are used for visualization 

and collision detection respectively, are illustrated in Fig. 1. 

They are drawn by open source 3D drawing tool SketchUp 

[15]. Note that the collision element is not a duplicate of the 

model’s exterior but a simplified cylinder with the same base 

shape and height as the model exterior. This simplification 

does not affect the simulation effect but improves the 

simulation speed. For the same purpose, we do not model the 

real robot’s physical mechanisms, such as omnidirectional 

locomotion, ball-dribbling, ball-kicking and omni-vision 

camera mechanisms, and therefore there is no need for any 

joint in this model. The simplification can be justified by the 

simulation system’s design purpose: to test multi-robot 

collaboration strategies or algorithms. Therefore the emphasis 

of the simulation system is on the final effect of robots’ basic 

motions but not the complicated physical processes involved. 

The physical mechanisms’ capabilities can be realized by a 

Gazebo model plugin that will be discussed in Section III. 

TABLE I.   
PROPERTIES OF THE ROBOT MODEL 

Property name Value 

Mass [11] 31 kg 

Moment of inertia [11] 
Izz = 2.86 kg•m2 , 

Ixx= Iyy= Ixy= Ixz= Iyz=0 

Friction coefficient 0.1 

Velocity decay Linear: 0. Angular: 0 

Model plugin nubot_gazebo 

 

Fig. 1.  Mesh and collision properties of the robot model. (a) Mesh property; 

(b) collision property. 

2) Soccer field model: According to 2015 RoboCup MSL 

competition rules [17], we use SDF file, OGRE [18] material 

scripts and images of the goal net, field ground and field lines 

to build the soccer field model. The collision elements are 

composed of each parts’ corresponding geometry. 

3) Soccer ball model: The soccer ball model is built with 

the same attributes of a defined FIFA standard size 5 soccer 

ball that is played in RoboCup MSL. The pressure inside the 

model is neglected and the collision element is a sphere of the 

same size of the soccer ball. 

TABLE II.   
PROPERTIES OF THE SIMULATION WORLD 

Property name Value 

Physics engine Open Dynamics Engine (ODE) [14] 

Max step size 0.007 s 

Real time update rate 150 Hz 

Gravity -9.8 m/s2 

Models to spawn 
ground_plane, soccer field, left_goal, 

right_goal 

B. The Simulation world 
The world file specifies the simulation background, 

lighting, camera pose, physics engines, simulation step size 
and etc. Some important properties of the simulation world 
are listed in TABLE II. Finally, a simulation world with three 
robots and a soccer ball is created (see Fig. 2). 

 

Fig. 2.  The simulation world 

III. A SINGLE ROBOT’S BASIC MOTIONS REALIZATION 

To realize a single robot’s basic motions, a Gazebo model 
plugin named “nubot_gazebo” is written. A model plugin is a 
shared library that attached to a specific model and inserted 
into the simulation. It can obtain and modify the states of all 
the models in a simulation world. We will discuss the 
“nubot_gazebo” model plugin in three parts. 

A. Overview of the “nubot_gazebo” plugin 
When “nubot_gazebo” plugin is loaded at the beginning 

of a simulation process, its tasks include: 

 Obtaining parameters of the soccer ball model’s name, 

ball-dribbling distance threshold, ball-dribbling angle 

threshold and etc. from ROS parameter server. 

 Setting up ROS publishers, subscribers, service servers 

and a dynamic reconfigure server. 

 Binding model plugin update function that runs in every 

simulation iteration. 

 

Fig. 3.  The computation graph of the model plugin 

The model plugin starts running automatically when a 
robot model is spawned. For example, when the robot model 
“bot1” is spawned, a computation graph is created and 
visualized by ROS tool rqt_graph  (see Fig. 3). In Fig. 3, there 
is only one node called “/gazebo”, which publishes 
(represented by an arrow pointing outward) and subscribes 
(represented by an arrow pointing inward) several topics 
enclosed by small rectangles. The topics inside the “gazebo” 
namespace are created by a ROS package called 
gazebo_ros_pkgs, which provides wrappers around the 
stand-alone Gazebo and thus enables Gazebo to make full use 
of ROS messages, services and dynamic reconfigure. Those 
inside the “bot1” namespace are created by the model plugin.  
All the topic names are self-explanatory. For instance, 



messages on /bot1/nubotcontrol/velcmd topic are used to 
control the robot model’s velocity.  

Although the physical mechanism of the omni-vision 
camera is not simulated, the robot model is still able to obtain 
information of other models’ positions and velocities by 
subscribing to the topic /gazebo/model_states. In addition, 
ball-dribbling and ball-kicking are realized by calling 
corresponding ROS services (not illustrated in Fig.3). They 
will be discussed in the following part. 

B. Motions realization 
A single robot’s basic motions include omnidirectional 

locomotion, ball-dribbling and ball-kicking. For better 
explanation, two reference frames are created: the world 
frame denoted by the subscript w and the robot body frame 
denoted by the subscript r as shown in Fig. 4. The xr- axis is in 
the ball-kicking direction. Its corresponding unit vector is 

denoted by KD , of which the representation in the robot body 

frame is [10 0]T

KrD   and in the world frame 
KwD : 

 
w =K wr KrD R D   (1) 

where 
wrR  is the rotation matrix representing the orientation 

of the robot body frame r relative to the world frame w. TD
 

is the unit vector pointing from the geometry center of the 

robot to that of the soccer ball. 

1) Omnidirectional locomotion: Gazebo’s built-in 

functions SetLinearVel and SetAngularVel are used to make 

the robot model move in any direction given any translation 

vector and rotation vector respectively.  

2) Ball-dribbling: If the distance between the robot and 

the soccer ball is within a distance threshold and the angle 

between KD  and TD  is also within an angle threshold, then 

the dribble condition is satisfied and the robot is able to 

dribble the ball. Under this condition, to realize 

ball-dribbling, the soccer ball’s pose is directly and 

continuously set by Gazebo’s built-in function to continually 

satisfy the dribble condition. In other words, the vector 

pointing from the geometry center of the robot to that of the 

soccer ball ( rsP  ) is set as follows: 

 *rs KP gap D   (2) 

where gap  is the specified distance (smaller than the dribble 

distance threshold) between the robot and the soccer ball.  

3) Ball-kicking: Similarly, ball-kicking is realized by 

giving the soccer ball a specific velocity at the start of the 

kicking process. There are two ways of kicking: the ground 

pass and the lob shot. In the ground pass, the soccer ball does 

not lose contact with the ground so its initial velocity vector 

is calculated in the xw-yw plane: 

 0gp Kv v D   (3) 

where 
0v  is the desired initial speed. As for the lob shot, the 

soccer ball is kicked into the air so its speed in the z-direction 

should also be taken into account. Since the air resistance is 

trivial compared with the gravity effect, it is reasonable to 

assume that the ball’s flight path is a parabola. For 

convenience, a planar frame X-Y of which the origin is the 

center point of the soccer ball is set up. Its X- and Y-axes are 

parallel to xr- and zr- axes respectively as shown in Fig. 4. 

 

Fig. 4.  Reference frames and notations for motions realization 

The following calculation is discussed in this planar X-Y 
frame. The soccer ball is regarded as a particle so the equation 
of its flight curve is defined by: 

 2y ( )f x ax bx c      (4) 

where a, b and c are parameters to be solved. The distance 

between the origin and the crosspoint of the X-axis and the 

common perpendicular of the X-axis and the goal line is 

denoted by d; the goal height is H (measured from the ground 

to the lower surface of the horizontal goal pole); the radius of 

the ball is r. Let h=H-2r, so when the ball flies through the 

point (d, h) this shot is successful. In other words, 
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  (5) 

Suppose the soccer ball’s velocity along the X-axis 
Xv  is 

constant during the flight, so the displacement along X-axis 

is calculated by ( ) Xx t v t and substituted in (4) we obtain: 

 2 2( ) X Xy t av t bv t c     (6) 

 2''( ) 2 -Xy t av g    (7) 

where g  is the gravitational constant. Combining with (4),  

(5) and (7) we obtain equation (8). 
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Therefore the soccer ball’s initial velocity in Y-axis is: 

 
0'(t) |Y t Xv y bv    (9) 

Above all, the initial velocity in the world frame is: 

 , , ,y( , , )ls w X Kw x X Kw Xv v D v D bv     (10) 

where ,Kw xD and ,yKwD  are the x- and y- component 

of wKD respectively. In fact, h is given a smaller value in the 

simulation to guarantee that the ball will always be shot into 

the goal. Note that 
Xv has an upper limit given by: 



 
2

b
d

a
    (11) 

Combining with (8) and (11) we get this upper limit denoted 

by 
thresv : 

 
2

X thres

g
v v d

h
    (12)  

C. Single robot motions test 
To test single robot’s basic motions, four behavior states 

are defined as follows: CHASE_BALL, DRIBBLE_BALL 
(including two sub-states MOVE_BALL and 
ROTATE_BALL), KICK_BALL, RESET and HOME. The 
robot model performs these motions following the behavior 
states transfer graph as shown in Fig. 5. The test results (see 
Fig. 6) prove that the “nubot_gazebo” model plugin realizes 
basic motions successfully. 

IV. MODEL PLUGIN AND REAL ROBOT CODE INTEGRATION 

The “nubot_gazebo” model plugin discussed above has 
realized a single robot’s basic motions without the need to 
model the real robot’s physical mechanisms. However, in 
order to test multi-robot collaboration algorithms, it is 
significant to integrate the model plugin with the real robot 
code.  

In the real robot code, there are seven nodes in total (see 
Fig. 7). The five nodes enclosed by shadowed ellipses are 
directly related to the robot’s hardware. The other two nodes, 
“world_model” node and “nubot_control” node, process 
global information and control robot behavior respectively. In 
addition, there is a Windows program dubbed Coach that 
receives and visualizes information from each robot and sends 

basic commands such as game-start, game-stop, kick-off, 
corner-ball and etc. via UDP protocol to them in return.  

To integrate the real robot code with the model plugin, 
those five nodes related directly to hardware should be 
replaced with the model plugin. This successful replacement 
requires an appropriate interface, in other words, correct ROS 
messages-passing and services-calling between them. Finally, 
the data flow of the integration of the real robot code and the 
model plugin is shown in Fig. 8. There are three noticeable 
changes described as follows: 

1) “nubot_control” and “world_model” nodes converted 

to model plugins: As a result, the namespace has been 

changed from “nubot” to “gazebo”. There are two reasons 

why “nubot_control” and “world_model” nodes are 

converted to model plugins.  

The first reason is for model completeness. Because only if 

all of the three model plugins are attached to a robot model 

can the model simulate the complete behavior of a 

corresponding real robot. Therefore, these two nodes should 

be converted to model plugins so that they will be loaded 

automatically once the robot models are spawned. 

The second reason is for name-prefixing. Because all the 

robot models use the same model plugins and are created into 

one simulation world, they cannot distinguish their own 

messages and services from others’. In this case, it is 

necessary for each models’ name to be used as a prefix to their 

own topic names or service names. Therefore, the simulation 

robots can subscribe to their own topics or response to their 

own services. These prefixes-the model names-are obtained 

by using model plugins. 

 

 
Fig. 5.  Single robot behavior states transfer graph 

 
Fig. 6.  Single robot simulation result. (a) Initial state; (b) CHASE_BALL state; (c) DRIBBLE_BALL state; (d) KICK_BALL state; 



In addition, the conversion from these nodes to model 

plugins is not complicated; the essential method is to inherit 

from “ModelPlugin” class and overload the “Load” member 

function [21]. However, if “world_model” and 

“nubot_control” are not converted to model plugins, an extra 

mechanism, such as a well-written bash script, is necessary to 

guarantee that they correspond to the appropriate robot 

models. 

 

Fig. 7.  The data flow graph of the real robot code. 

 

Fig. 8.  The data flow graph of the integration of the real robot code and the 

model plugin. 

2) An intermediary node used for communication between 

robots and the Coach: As can be seen in Fig.7 and Fig.8, the 

connection between “world_model” and the Coach has been 

changed from two full lines to two broken lines, indicating 

that the communication is indirect in the latter situation. In 

fact, the real robot code uses blocking socket network 

communication with the Coach. Thus if several robots are 

spawned in a simulation world, only one robot is able to 

receive information from the Coach. The solution to the 

problem is either using non-blocking socket programming or 

using an intermediary node as a bridge. We adopt the latter 

method to create a node called “/coachinfo_publisher” to 

successfully solve this problem. This node communicates via 

UDP protocol with the Coach and then publishes messages 

on a specific topic so that each robot can subscribe to it. 

3) Gaussian noise: Gaussian noise is added to the position 

and velocity information obtained by the robot model to 

mimic the real world situation. 
Finally, we spawn two robot models “bot1” and “bot2” into 

a simulation world and obtain the computation graph as 
shown in Fig. 9. Note that all the model plugins are contained 
in the “/gazebo” node and the topic names are all prefixed by 
corresponding model names. 

 

Fig. 9.  The computation graph of the simulation with two robot models 

TABLE III.   
CONFIGURATION OF TWO COMPUTERS 

 
Operating system and 

software 
IP address 

Subnet 
mask 

Computer1 
Ubuntu 14.04 64 bits; 
ROS Indigo; Gazebo 5.0 

172.16.53.203 255.255.0.0 

Computer2 
Windows 7 64 bits; 
Visual Studio 2013 

172.16.53.220 255.255.0.0 

V. MULTI-ROBOT SIMULATION TEST 

To test multi-robot simulation, we need two computers, 
Computer 1 and Computer 2, connected by a network cable. 
Computer 1 is used to run Gazebo and simulation models 
whereas Computer 2 is used to run the Coach program. Their 
configurations are listed in TABLE III.  

Firstly, we test the communication between the model 
plugins and the Coach program. In this test, three robot 
models and three static obstacles (static rival robots) are 
spawned into the simulation world. The test result shows that 
the positions of the models are displayed correctly in the 
Coach window. And in reverse, the robot models are able to 
receive commands from the Coach program. So the 
communication is a success. 

Secondly, given static obstacles the same as the first test, 
we test whether the robot models can make motions 
corresponding to the real robot code. The result proves that 
the robot models can perform motions as expected. 

Lastly, by attaching separate model plugins to the rival 
robot models and reversing the reference frames in the 
“/nubot_gazebo” plugin, two sides of robot models are able to 
compete against each other as shown in Fig. 10. 

To sum up, these tests prove that the interface between the 
model plugins and the real robot code is successfully realized. 
And the simulation system is able to simulate both sides of 
robots’ motions.  

 



 
Fig. 10.  Two sides of robot models compete in a soccer game. (a) The initial state of the robot models (black) and the rival robot models (red); (b) three robots 

on the right side of the soccer field are chasing the soccer ball; (c) Black robots shoot the goal.

VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 

In order to test multi-robot collaboration algorithms of 
real robot code, we set up a robot soccer simulation system 
using ROS and Gazebo model plugins. This process 
comprises of three stages. The first stage is constructing 
Gazebo models with visualization, collision elements and 
other properties. The second stage is writing a Gazebo model 
plugin to realize the basic motions such as omnidirectional 
locomotion, ball-dribbling and ball-kicking. The last stage is 
to integrate the model plugin with the real robot code. Finally, 
the test results manifest that the simulation system is able to 
simulate multi-robot collaboration.  

Although the simulation system uses NuBot as the robot 
model, the design and implementation methods can be widely 
applied to other robots as well. Specifically, this simulation 
system can be easily adapted for other soccer robots by 
modifying corresponding messages and services. Overall, the 
simulation system enriches and develops the research of 
multi-robot simulation. 

B. Future work 

Further study will focus on the modeling of 
omnidirectional wheels and improvement of the simulation 
speed.  
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