
Object Motion Estimation Based on Hybrid
Vision for Soccer Robots in 3D Space

Huimin Lu, Qinghua Yu, Dan Xiong, Junhao Xiao, and Zhiqiang Zheng

College of Mechatronics and Automation,
National University of Defense Technology, Changsha, China

{lhmnew,xiongdan,zqzheng}@nudt.edu.cn,{yuqinghua}@163.com,{junhao.xiao}@

ieee.org

Abstract. Effective object motion estimation is significant to improve
the performance of soccer robots in RoboCup Middle Size League. In
this paper, a hybrid vision system is constructed by combining omnidi-
rectional vision and stereo vision for ball recognition and motion esti-
mation in three-dimensional (3D) space. When the ball is located on the
ground field, a novel algorithm based on RANSAC and Kalman filter is
proposed to estimate the ball velocity using the omnidirectional vision.
When the ball is kicked up into the air, an iterative and coarse-to-fine
method is proposed to fit the moving trace of the ball with paraboic
curve and predict the touchdown-point in 3D space using the stereo vi-
sion. Experimental results show that the robot can effectively estimate
ball motion in 3D space using the hybrid vision system and the proposed
algorithms, furthermore, the advantages of the 360◦ field of view of the
omnidirectional vision and the high object localization accuracy of the
stereo vision in 3D space can be combined.

1 Introduction

In the highly dynamic RoboCup Middle Size League (MSL) competition, accu-
rate estimation of object motion states, such as the velocity and the shooting
touchdown-point of the ball, is the basis of ball passing and intercepting for
regular robots, and shoot defending for goalie robots. Furthermore, because the
ball is often lifted by the robots’ high kicks during MSL competition, the bal-
l motion should be estimated in three-dimensional (3D) space to improve the
performance of soccer robots.

In [1], a Kalman Filter was used to detect whether the ball is moving or
stationary. In the corrector part of the Kalman Filter, a multilayer perceptron
artificial neural network was integrated to reduce the affection of image noises
caused by the motion vibration of the robot, so the robustness of the state
detection could be improved. In [2], Lauer et al. assumed that, during a small
piece of time, the motion of a ball rolling on the filed is a linear movement with a
constant velocity. Therefore, the ball velocity estimation could be modelled as a
standard linear regression problem, which could be solved by ridge regression —
a least squares mathcing method (LSM). In [3], Kalman Filter was employed for



ball position estimation; based on the estimated positions, an algorithm similar
as that in [2] was utilized to evaluate the ball velocity, resulting improved ball
velocity estimation accuracy.

However, the methods mentioned above can only be used when the ball is
located on the ground field. In [4][5], Taiana et al. applied particle filter to track
the ball using omnidirectional vision in 3D space, where the 3D shape of the ball
was considered and the colour histograms of the inner and outer boundary on the
panoramic image projected by the ball were used to construct the observation
model in particle filter. The experimental results show that it can precisely track
the ball and acquire the ball position in 3D space, but other motion states like
velocity were not estimated.

In [6][7][8], a mixed stereo camera sensor was constructed based on omnidi-
rectional vision and perspective camera, which was employed to recognize and
localize the ball in 3D space. As a result, the advantages of the 360◦ field of view
of the omnidirectional vision and the long field of view of the perspective camera
can be combined. In [6][7], triangulation was used to calculate the ball position
in 3D space. In [8], Käppeler et al. found that better results could be achieved
when calculating the 3D ball position using the angle to the ball determined
by the omnidirectional vision and the distance to the ball derived from the size
in the image of the perspective camera in comparison with the triangulation
method, but they did not discuss ball velocity estimation in 3D space. In [6],
Voigtländer et al. extended the approach in [2] from 2D space to 3D space to
estimate the ball velocity. In [7], Lauer et al. developed a maximum likelihood
estimator based on the ECM approach and a Bayesian approach based on Gibbs
sampling to estimate the ball position and velocity in 3D space. However, the
field of view of this kind of mixed stereo camera sensor is quite limited for motion
estimation in 3D space. Particularly, when the ball is kicked up higher than the
omnidirectional vision, the omnidirectional vision can not work any more.

Tech United Eindhoven team used a Laser Range Finder (LRF) attached to
the highest point of the goalie robot to detect lob balls, when the ball disappears
out of the view of the omnidirectional vision [9]. After the ball is detected, the
LRF is tilted further upwards with a servo to measure additional positions of
the ball in the air. With these points, the complete path of the ball can be
calculated using a parabolic fit. Recently, they use the RGB-D camera Kinect to
detect and track the ball in 3D space [10]. The main drawbacks are limitations
in resolution and field of view, and only balls within approximately six meters
can be recognized, which is not enough for goalie robots to intercept lob balls
successfully.

In this paper, we present a hybrid vision system combining omnidirection-
al vision and stereo vision, which is employed to recognize the ball and esti-
mate the ball motion states in 3D space including the velocity and the shooting
touchdown-point. The following sections are organized as follows: the system
overview is introduced in section 2; an algorithm to estimate the ball velocity
based on RANSAC and Kalman filter is proposed in section 3, using the omnidi-
rectional vision to deal with the situation that the ball is located on the ground



field; an object motion estimation algorithm including moving trace fitting and
touchdown point prediction is presented in section 4, which deals with the situ-
ation that the ball is kicked up into the air using the stereo vision; experimental
results are presented in section 5; section 6 concludes this paper.

2 The System Overview

Omnidirectional vision can provide a 360◦ view of the robot’s surrounding envi-
ronment in a single image, thus is quite suitable for ball recognition and motion
estimation when the ball is located on the ground field [11]. In the mixed stereo
vision proposed in [6][7][8], the overlapped field of view of omnidirectional vision
and perspective camera is quite small. Especially when the ball is higher than
the robot, it is beyond the field of view of the stereo vision. Furthermore, since
the imaging resolution of the omnidirectional vision is limited, the accuracy of
ball localization can not be high in 3D space. Therefore, it is hard to deal with
object motion estimation in 3D space well with such a mixed stereo vision. In
this paper, we add Bumblebee2, a stereo vision developed by Point Grey Re-
search, to construct the hybrid vision system for our soccer robots, as shown in
Fig. 1. Typical images acquired by the omnidirectional vision and stereo vision,
and the corresponding ball recognition results are also illustrated.

Fig. 1. The NuBot soccer robot equipped with the hybrid vision system constructed
with omnidirectional vision and stereo vision. Typical images acquired by each vision
and the ball recognition results are also shown.

The working architecture of the hybrid vision system is depicted in Fig. 2.
Firstly, the omnidirectional vision searches the ball in the 360◦ view. If the ball is
detected, the robot will turn to the ball. Afterwards, the stereo vision is employed
to recognize and localize the ball in 3D space based on triangulation, by which



the robot can determine whether the ball leaves the ground field. If the ball is
located on the ground field, an algorithm based on RANSAC and Kalman filter
is used to estimate the ball velocity with the omnidirectional vision. If the ball
is kicked up into the air, a ball motion estimation algorithm is used to fit the
moving trace and predict the touchdown-point where the robot should move to
intercept the ball using the stereo vision. When the ball disappears from the view
of the robot, the robot has to search the ball again using the omnidirectional
vision. In such an architecture, the advantages of the 360◦ field of view of the
omnidirectional vision and the high object localization accuracy of the stereo
vision in 3D space can be combined.

Fig. 2. The working architecture of the hybrid vision system to estimate the ball motion
in 3D space.

3 Ball Velocity Estimation Based on RANSAC and
Kalman Filter

When the ball is located on the ground field, omnidirectional vision is the
best choice for ball recognition and motion estimation. In the highly dynam-
ic RoboCup MSL competition, outliers and noises always exist in the informa-
tion of ball positions due to the limited imaging resolution of omnidirectional
vision, image noises, occlusions, motion blurs, etc, which will decrease the bal-
l velocity estimation accuracy. RANdom SAmple Consensus (RANSAC) is an



iterative method to estimate parameters of a mathematical model from a set
of observed data which contains outliers [12]. A typical example to fit a group
of points with outliers into a line is shown in Fig. 3, using RANSAC and least
squares matching (LSM), which demonstrates that better robustness to outliers
can be achieved by RANSAC. Therefore, in this paper, we apply RANSAC for
ball velocity estimation when the ball is located on the ground field.
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Fig. 3. Fitting points with outliers into a line by using RANSAC and LSM.

We assume that the ball velocity is constant between cycles in a short time
such as several hundred milliseconds, therefore we use RANSAC to estimate the
ball velocity with ball positions Xi and corresponding timestamp ti, i = 1, ..., n.
We can acquire the velocity value Vm as follows:

Vm =
Xi −Xj

ti − tj
, (i ̸= j, i, j = 1, ..., n,m = 1, ..., n(n− 1)/2) (1)

Then we can choose k values from {Vm,m = 1, ..., n(n− 1)/2} randomly as hy-

pothetical inliers, and calculate the mean value Ml =
∑k

i=1 Vi/k as a candidate
model with a counter Cl = 0. All the other velocity values are tested against
the model by comparing the distance between the value and the model. If the
distance is less than a threshold, Cl = Cl +1, and the value is added into hypo-
thetical inliers as the consensus set. Once this test finishes, a better model Ml is
updated by calculating the mean value from the consensus set. After performing
this operation iteratively by L times, {Ml, Cl, l = 1, ..., L} can be achieved. The
Ml with the largest Cl is considered as the estimated ball velocity.

To further improve the robustness and accuracy, we also use Kalman filter
to optimize the ball positions before estimating the ball velocity similar as that
in [3]. As the ball velocity is assumed to be constant between cycles in a short
time, we use the prediction model as follows:(

Xk+1

Vk+1

)
=

(
1 ∆t
0 1

)(
Xk

Vk

)
(2)



where Xk is the ball position, and Vk is the ball velocity. To model the measure-
ment variance in the Kalman filter, we place the ball on the field with different
distances to the robot, and then the robot recognizes and localizes the ball us-
ing the omnidirectional vision. As a result, a group of measurement variances is
acquired shown as the red points in Fig. 4. Afterwards, we fit these variances by
using a four order polynomial, shown as the green curve in Fig. 4. The result is
also useful in the simulation experiments in section 5.1.

With Kalman filter, ball collision with other objects can also be detected,
which happens frequently during the competition. We consider a collision hap-
pens when the distance between the ball measurement and the filtered result is
larger than a threshold in five consecutive cycles. In that case, the Kalman filter
will be restarted, and the ball measurements of the latest five cycles will be used
as the initial data for ball velocity estimation.
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Fig. 4. The ball measurement variance when the ball is located on different distances
to the robot.

4 Fitting the Moving Trace and Predicting of the
Touchdown-point in 3D Space

4.1 Fitting the Moving Trace in 3D Space

After obtaining the 3D position of the ball by triangulation using stereo vision,
the robot can determine whether the ball leaves the ground field. If the 3D
positions are higher than the ground field by 10 centimeters in consecutive three
cycles, the ball is considered to be kicked up into the air. We use parabolic curve
to fit the moving trace of the ball. The ball motion can be modelled as follows:xi = a0 ∗ ti + a1

yi = a2 ∗ ti + a3
zi + g ∗ t2i /2 = a4 ∗ ti + a5

(3)



where xi, yi and zi are 3D coordinates obtained by stereo vision in the timestamp
ti, and g is the gravity acceleration. The three equations are simple and linear.
When a group of {xi, yi, zi, ti} is obtained, a0, ..., a5 can be calculated by the
least squares method in three coordinates respectively. Therefore, the moving
trace of the ball can be acquired using the parabolic fit.

4.2 Predicting of the Touchdown-point

After fitting the moving trace of the ball, the robot can predict the touchdown-
point where the ball falls on the ground field or the ball passes through the
goal plane. The touchdown-point can be calculated easily by intersecting the
moving trace with the ground field and the goal plane. Then the robot can use
the touchdown-point and the ball velocity a0, a2 to decide how to intercept or
defend the ball.

To speed up the robot’s response to the ball, the touchdown-point should
be predicted as early as possible, requiring the ball positions used in fitting and
predicting should be as few as possible. However, to improve the accuracy of
ball intercepting or defending, more ball positions should be used in fitting and
predicting to acquire more accurate prediction results. As a compromise, we use
an iterative method to deal with this contradiction. Once the robot obtains five
ball positions in the air, the first fitting and prediction is performed to acquire
a coarse result of the predicted touchdown-point, thus the robot can respond to
the ball very quickly. Then the robot will go on fitting and predicting with more
data after obtaining new ball positions to update the prediction results. So the
robot can achieve coarse-to-fine fitting and prediction results iteratively during
ball intercepting or defending.

5 Experimental Results

In this section, we evaluate the two algorithms proposed in section 3 and section
4 respectively.

5.1 Ball Velocity Estimation Results by Omnidirectional Vision

Because no ground truth about ball positions and velocities can be provided in
the actual experiments, we firstly perform simulation experiments to evaluate
three algorithms: the proposed Kalman filter+RANSAC, Kalman filter+LSM,
and Kalman filter. We add Gaussian noises into the simulated ball positions
according to the variances in Fig. 4. Three different situations are considered
including no collision, one collision, and multiple collisions of the ball. The ball
positions and the estimated ball velocities in one experiment are shown in Fig. 5.
We perform ten such experiments, and the statistics are shown in Table 1, where
Ē is the mean estimation error, and P̄ the mean ratio between the error and the
real velocity. From table 1, we see that when no collision happens, all the algo-
rithms work well, and Kalman filter is the best algorithm to estimate the ball



velocity, because the added noises are Gaussian in this simulation experiment.
When collision happens, the motion direction of the ball changes, and better
performance can be achieved by using Kalman filter+RANSAC and Kalman
filter+LSM than Kalman filter. Furthermore, in comparison with Kalman fil-
ter+LSM, the estimation accuracy can be improved by 15%∼40% when using
Kalman filter+RANSAC.

Table 1. The statistics about ball velocity estimation by three different algorithms in
simulation experiments. The unit of Ē is cm/s.

no collision one collision multi-collision

Ē P̄ Ē P̄ Ē P̄

KalmanFilter+LSM 10.84 4.01% 32.78 9.47% 27.22 11.68%

KalmanFilter+RANSAC 10.97 4.05% 20.20 5.83% 22.64 9.710%

Kalman Filter 4.780 1.80% 91.86 26.6% 59.50 25.70%

We also test Kalman filter+RANSAC and Kalman filter+LSM in the actual
experiments using our NuBot soccer robot. The ball velocity estimation results
are shown in Fig. 6 when the robot is stationary or moving. Because no ground
truth can be provided, we only can say both algorithms work well. A video show-
ing that our robot estimating the ball velocity by using the proposed Kalman
filter+RANSAC algorithm can be found on:

http://v.youku.com/v_show/id_XNzI2MDM5MzAw.html

Because the computation complexity of Kalman filter+RANSAC is quite low
and it can be performed within several milliseconds, the discussion about the
real-time performance is not necessary in this paper.

5.2 Ball Motion Estimation Results by Stereo Vision

The moving trace of the ball is fitted by the proposed algorithm in x, y, z
coordinate respectively. A typical fitting process is shown in fig. 7, where the first
fitting with five ball positions, and the subsequent fitting with seven, nine, eleven,
and thirteen ball positions are demonstrated. We see that the fitting results
converge during the iterative process, which verifies that the fitting accuracy
becomes higher as more data of ball positions are used. Although the accuracy
of the first fitting is low, it is significant for the robot’s quick response.

We use our goalie robot to test the fitting and prediction results by defending
high shooting. During the experiment, a person simulates the high shooting by
throwing the ball to the goal from different positions with different distances to
the goal about 5∼9 meters. The results show that the goalie robot can defend
the high shooting with a successful rate of 80%, which also verifies that the
touchdown-point can be predicted effectively using the proposed algorithm. A
typical successful defending is shown in Fig. 8. The video about this experiment
can be found on: http://v.youku.com/v_show/id_XNzI2MDQwNDcy.html.
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Fig. 5. The ball positions (a)(c)(e) and the ball velocities estimated by three different
algorithms (b)(d)(f) in simulation experiments.
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Fig. 6. The robot and ball positions (a)(c) and the ball velocities estimated by Kalman
filter+RANSAC and Kalman filter+LSM (b)(d) in actual experiments when the robot
is stationary (a)(b) or moving (c)(d).

Again, the computation complexity of the proposed algorithm is quite low
and it can be performed in less than one millisecond, so the discussion about the
real-time performance of the algorithm itself is not necessary in this paper. How-
ever, in our hybrid vision system, the omnidirectional vision and stereo vision
often work simultaneously, therefore we should evaluate the real-time perfor-
mance of the hybrid vision system as a whole. The robot’s computer is equipped
with a 1.66G CPU and 1.0G memory. When the robot works in the competi-
tion state, the omnidirectional vision can work on a frame rate of 25 fps, and
the stereo vision can work on a frame rate of 20 fps, which meets the real-time
requirement of RoboCup MSL competition.

6 Conclusion

In this paper, a hybrid vision system is constructed with omnidirectional vision
and stereo vision to realize ball recognition and motion estimation in 3D space.
To the best of our knowledge, it is the first time that this kind of hybrid vision
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Fig. 7. The moving trace of the ball is fitted by the proposed algorithm in x (a), y (b),
z (c) coordinate respectively when using different numbers of ball positions.

Fig. 8. A typical successful defending of our goalie robot to the high shooting.



is used in RoboCup MSL. When the ball is located on the ground field, a novel
algorithm based on RANSAC and Kalman filter is proposed to estimate the ball
velocity using the information from the omnidirectional vision. When the ball
is kicked up into the air, an iterative and coarse-to-fine method is proposed to
fit the moving trace of the ball with paraboic curve and predict the touchdown-
point in 3D space using the information from the stereo vision. As a result,
the quick response and accuracy can be met simultaneously for soccer robots
to intercept or defend the ball. Experimental results show that the robot can
realize effective estimation of ball motion in 3D space using the hybrid vision
system and the proposed algorithms.

In the future, we would like to compare our ball motion estimation with
other approaches existing in RoboCup MSL after trying to acquire the ground
truth. We also want to realize better recognition and motion estimation of other
objects like obstacles employing our hybrid vision system.
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