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Abstract Visual perception is the most important method 

for providing information about the competition 

environment for RoboCup Middle Size League (MSL) 

soccer robots. The paper reviews the advancement of 

visual perception in RoboCup MSL soccer robots from 

several points of view including the design and 

calibration of the vision system, the visual object 

recognition, the estimation of the object’s motion, robot 

visual self-localization and multi-robot cooperative 

sensing. The research progress we have achieved is also 

introduced in this review. The developing trends and the 

future research focuses on this problem are also 

discussed. 

 

Keywords RoboCup, soccer robots, omnidirectional 

vision, object recognition, self-localization 

                                         
1. Introduction 

 

RoboCup is an international research and education 

initiative to foster research into artificial intelligence and 

intelligent robots by providing a standard test-bed where 

a wide range of technologies can be tested and integrated. 

The final goal of RoboCup is to develop a team of fully 

autonomous humanoid robots that can win against the 

human world soccer champion team by 2050. 

 

RoboCup includes RoboCup Soccer (Simulation League, 

Small Size League, Middle Size League, Standard 

Platform League), RoboCup Rescue, RoboCup@home, 

RoboCup Junior, etc. In the RoboCup Middle Size League 

(MSL), all the robots are totally distributed and 

autonomous and must use their own sensors to obtain 

environment information and use their own computer to 

process sensor information and realize decision making, 

planning and control. Wireless communication with a 

limited bandwidth can be used to help coordination and 

cooperation with teammates. 

 

Because all the MSL robots are totally distributed and 

autonomous, all the robot sensors are on-board and 



 

sensor information acquisition and processing are also 

performed by the on-board computer. Commonly used 

sensors include the vision system, the motor encoder, the 

digital compass, the gyro and so on. Because the vision 

system is relatively low-cost and it can provide the 

richest environment information, visual perception has 

become the most important method for realizing object 

recognition, estimation of the object’s motion and self-

localization for soccer robots. 

 

 
Figure 1. A typical scene of the RoboCup MSL competition. 

 

During the competition, up to 5 robots are allowed to 

play a game for each team on a 18x12m field. A typical 

competition scene is shown in Figure 1. As the 

competition has become more and more fierce, RoboCup 

MSL has become an increasingly and highly dynamic 

environment. Therefore, the visual perception should be 

run with high accuracy and high robustness in real-time. 

In this paper, we review the advancement of visual 

perception in RoboCup MSL soccer robots respectively 

from the following aspects: the design and calibration of 

the vision system, the visual object recognition, the 

estimation of the object’s motion, robot self-localization 

and multi-robot cooperative sensing. The research 

progresses achieved by our team, NuBot, are also 

introduced. Furthermore, because many problems in 

visual perception for MSL soccer robots are common in 

computer/robot vision research, this survey is also of 

value for other researchers in the computer/robot vision 

community. The following sections are organized as 

follows: the design and calibration of the robot vision 

system are introduced in Section 2, visual object 

recognition is introduced in Section 3, the estimation of 

the object’s motion is presented in Section 4, robot self-

localization is presented in Section 5, multi-robot 

cooperative sensing is introduced in Section 6, the 

developing trends and the research focuses are discussed 

in Section 7 and Section 8 concludes the paper. 

 

2. The design and calibration of the vision system 

 

The catadioptric omnidirectional vision system is one of 

the most popular sensors for the RoboCup MSL soccer 

robots, which has been used by almost all of the MSL 

soccer robots, as shown in Figure 1. It consists of a convex 

mirror and a camera pointed upward towards the mirror 

[1], as shown in Figure 2. This system can provide a 360o 

view of the robot’s surrounding environment in a single 

image and robots can use it to realize object recognition 

by image processing and understanding and self-

localization by fusing the odometry information from 

motor encoders. Therefore, the perception information 

about the environment can be provided for robot control, 

planning, multi-robot cooperation and coordination. 

Some MSL teams also use the perspective camera as the 

front vision system to assist the omnidirectional vision 

system for dribbling and controlling the ball precisely. 

Because the intrinsic and extrinsic parameters can be 

calibrated by using the released toolbox for the 

perspective camera, we will not discuss this issue in this 

section and only the design and calibration of the 

omnidirectional vision system are presented. 

 

Figure 2. The sketch of the catadioptric omnidirectional vision 

consisting of a convex mirror and a camera. 

 

2.1 The design of the vision system 

 

The characteristics of an omnidirectional vision system 

are determined mostly by the shape of a panoramic 

mirror. According to the different imaging principles, the 

omnidirectional vision can be divided into single-

viewpoint and non-single-viewpoint omnidirectional 



 

vision. The hyperboloidal mirror, the parabolla mirror 

and the ellipsoidal mirror can be used to construct a 

single-viewpoint omnidirectional vision system. The 

conic mirror, the spherical mirror, the horizontally 

isometric mirror and the vertically isometric mirror can 

be used to construct a non-single-viewpoint 

omnidirectional vision system. The imaging theory and 

characteristics of the omnidirectional vision using the 

conic mirror, the spherical mirror, the hyperboloidal 

mirror, the parabolla mirror and the ellipsoidal mirror 

can be found in [2] in detail. To make the imaging 

resolution of the scene constant horizontally, vertically 

and angularly, three mirrors with constant imaging 

resolution were designed in [3], called the horizontally 

isometric mirror, the vertically isometric mirror and the 

angularly isometric mirror, respectively. 

 

 
Figure 3. The profile curve of the panoramic mirror developed 

by NuBot team. 

 

The most commonly used mirror is the hyperboloidal 

mirror, which is used by the robots from Tribots [4], RFC 

Stuttgart [5], Tech United [6], CAMBADA [7], etc. The 

main deficiency of this kind of mirror is that the imaging 

resolution decreases greatly as the distance to the robot 

increases and the imaging of the objects far from the 

robot is quite small, which is not suitable for robots to 

realize object recognition on a large scale. A multi-part 

mirror consisting of the horizontally isometric mirror, the 

constant curvature mirror and the planar mirror was 

designed in [8]. NuBot team designed a new panoramic 

mirror, which consists of the hyperboloidal mirror, the 

horizontally isometric mirror and the vertically isometric 

mirror from interior to exterior [9, 10]. The profile curve 

of the panoramic mirror is demonstrated in Figure 3. The 

new omnidirectional vision system using this mirror not 

only makes the imaging resolution of the objects near the 

robot on the field constant and the imaging distortion of 

the objects far from the robot small in the vertical 

direction, but also enables the robot to acquire very clear 

imaging of the scene that is very close to it, including the 

robot itself. 

 

2.2 The calibration of the vision system 

 

Only after finishing the distance map calibration from the 

image coordinate to the robot centred real world 

coordinate, can the omnidirectional vision be applied to 

make a visual measurement. In the past few years, the 

calibration of the single-viewpoint omnidirectional vision 

has been deeply researched [11-14] and Scaramuzza [13] 

and Mei [14] have developed Matlab toolboxes for this 

kind of omnidirectional vision. However, the assumption 

that the mirror axis and the camera’s optical axis are 

coincident and the shape of the panoramic mirror has to 

be symmetric is needed in these traditional calibration 

methods. In the RoboCup MSL, there are lots of shocks 

and stresses on the omnidirectional vision system during 

transport of the robots and during frequent crashes in the 

competition, so this assumption is easily violated and at 

the very least hard to meet when (re-)assembling the 

omnidirectional vision in the competition venue. 

Therefore, the calibration accuracy cannot be guaranteed 

by using these methods. 

 

A calibration method for the non-single-viewpoint 

omnidirectional vision was proposed in [15], where the 

assumption that the mirror axis and the camera’s optical 

axis are coincident is not needed, but the assumption that 

the shape of the panoramic mirror has to be symmetric is 

still needed. A general solution was developed to 

calibrate the omnidirectional vision by exploring a back-

propagation ray-tracing approach and the geometric 

properties of the mirror surface [16, 17], so the non-

single-viewpoint misalignment from the imperfect 

mechanical setup and the use of a low cost camera could 

be compensated for. In [18] an efficient evolutionary 

approach was applied to calibrate the omnidirectional 

vision automatically after extracting the features and 

landmarks of the field known in advance from an image 

captured in a known pose. A model-free method was 

proposed to calibrate the omnidirectional vision for the 



 

robots in the Tribots team without needing the 

assumptions mentioned above and in [19]. In this method, 

a series of the edge points in a calibration patch are 

extracted as the support vectors in several pre-defined 

directions and then these support vectors are used for 

interpolation to obtain accurate distance mapping 

between the image coordinates and the real world 

coordinates. 

 

3. The visual object recognition 

 

According to the current MSL rules, although colour 

goals have been replaced with white goal nets and colour 

goalposts have been removed, the competition 

environment is still colour-coded. Therefore, the basic 

abilities for MSL robots are to recognize the yellow ball, 

the green field, white lines and other black robots. The 

final goal of RoboCup is that the robot soccer team 

defeats a human championship team, so robots should be 

able to play in competitions under highly dynamic, even 

outdoor lighting, conditions. Furthermore, according to 

the current rules of RoboCup MSL, the illumination is not 

specified and the technical challenge of playing with an 

arbitrary FIFA ball has been introduced. Therefore, how 

to make visual object recognition work robustly under 

varying lighting conditions in the colour-coded MSL 

environment has become a challenging research focus, 

even without the constraints of the current colour-coded 

environment for soccer robots, like recognizing ordinary 

FIFA balls. Many researchers have tried to solve this 

problem from the following aspects. 

 

3.1 Image acquisition 

 

Several researchers have tried to make the acquired 

image of the vision system describe the environment as 

consistently as possible under different lighting 

conditions by adjusting camera parameters in image 

acquisition, so as to improve the robustness of the visual 

object recognition. The camera parameters displayed here 

are image acquisition parameters, not intrinsic or 

extrinsic parameters in camera calibration. 

 

Grillo et al. defined camera parameter adjustment as an 

optimization problem and used the genetic meta-

heuristic algorithm to solve it by minimizing the 

distances between the colour values of image regions 

selected manually and the theoretical values in the colour 

space [20]. The theoretical colour values were used as 

reference values, so the effect from illumination could be 

eliminated, but special image regions must be selected 

manually by users in this method. Takahashi et al. used a 

set of PID controllers to modify the camera parameters 

like gain, iris and two white-balance channels according 

to the changes of a white reference colour, which is 

always visible in the omnidirectional vision system [21]. 

Lunenburg and Ven adjusted the shutter time by 

designing a PI controller to modify the colour values of 

the referenced green field to the desired values [22]. 

Neves et al. proposed an algorithm for the autonomous 

setup of camera parameters such as exposure, gain, 

white-balance and brightness for their omnidirectional 

vision [17, 23], according to the intensity histogram of the 

images and a black and a white region known in advance. 

In this case a colour patch including the black and white 

region is required on the field, so it can only be used off-

line before the competition. 

 

Because some kind of reference colour is needed in the 

four methods mentioned above, the NuBot team 

proposed a novel method to auto-adjust the camera 

parameters based on image entropy [10, 24]. Image 

entropy was defined by using Shannon’s entropy and 

then was verified by experiments to indicate whether the 

camera parameters are properly set, so that the camera 

parameters can be auto-adjusted to make the output of 

the vision system adaptive to varying lighting conditions. 

The experimental results show that some kind of colour 

constancy for the output of the omnidirectional vision 

can be achieved and robust object recognition can be 

realized under varying lighting conditions for soccer 

robots. Furthermore, unlike other methods, this method 

needs no referenced colour during the adjusting process, 

so it can be applied in more computer/robot vision 

situations. 

 

3.2   Colour calibration and learning 

 

In the colour calibration and learning of the vision system, 

the traditional methods, such as choosing the threshold to 

classify the colour [25] or building a colour lookup table 

[26] off-line through a human-computer interface, would 



 

not meet the requirements for segmenting the image and 

recognizing the object robustly when the lighting 

conditions fluctuate during the competition [27]. 

Furthermore, off-line calibration is time-consuming. 

Therefore, several on-line colour calibration and learning 

methods have been proposed in [28-30]. In these methods, 

the field line points are first extracted without colour 

classification to realize the robot’s self-localization and 

then according to the known environment model and the 

self-localization result, several kinds of object regions can 

be searched for or detected, so the colour lookup table 

can be built up to realize colour auto-calibration, which 

can be adjusted in real-time during the competition 

process to make object recognition adaptive to the 

changes in illumination. 

 

3.3   Image processing, analysis and understanding 

 

In image processing, some researchers processed and 

transformed the images to achieve some kind of 

constancy, such as colour constancy [31] by the Retinex 

algorithm, to improve the robustness of colour 

classification and object recognition. However, the 

computation cost of this method is usually high and it is 

not suitable for the highly dynamic MSL competition. 

 

In image analysis and understanding, the dynamic 

lighting conditions bring a great challenge to traditional 

object recognition methods by segmenting the image first 

and then detecting the colour blobs. Therefore, several 

object recognition algorithms that do not depend on 

colour segmentation have been proposed [21, 32, 33]. In 

[21], Markov Random Fields was used to segment the 

panoramic image and then, based on the assumption that 

the distribution of the object colour is Gaussian, each 

pixel of the image was classified to be an object colour 

according to its Mahalanobis distances to the Gaussian 

distribution of all of the reference object colours. The 

experimental results in the indoor and outdoor 

environments validated the effectiveness of this method. 

In [32], a robust algorithm was presented to recognize the 

orange ball. The image was segmented according to the 

Bayes classifier based on the colour histogram in UV 

colour space and then the ball was detected by using a 

randomized Hough transform. Finally, the colour 

histogram could be updated to adapt to the changes in 

illumination according to the recognition results. 

 

In recent years, object recognition without any colour 

classification, especially the recognition of arbitrary FIFA 

balls, has become a research focus in the robot vision of 

MSL [34-44]. A so-called Contracting Curve Density 

(CCD) algorithm [34-36] was proposed by Hanek et al. to 

recognize soccer balls without colour labelling. This 

algorithm fits parametric curve models with image data 

by using local criteria based on local image statistics to 

separate adjacent regions. The contour of the ball could 

be extracted even in cluttered environments under 

different illumination, but the vague position of the ball 

needed to be known in advance. Therefore, global 

detection could not be realized using this method. 

Treptow and Zell integrated the Adaboost feature 

learning algorithm into a condensation tracking 

framework [37], so a ball without a special colour could 

be detected and tracked in real-time even in cluttered 

environments. Mitri et al. presented a novel scheme [38] 

for fast colour invariant ball detection, in which the 

edged filtered images serve as the input of an Adaboost 

learning procedure that constructs a cascade of 

classification and regression trees. Different soccer balls 

could be detected by this method in different 

environments, but the false positive rate was high when 

other round objects were introduced into the 

environment. They then combined a biologically inspired 

attention system, VOCUS [39], with the cascade of 

classifiers. This combination made their ball recognition 

highly robust and eliminated false detection effectively. 

Coath and Musumeci proposed an edge-based arc fitting 

algorithm [40] for soccer robots to detect the ball. 

Bonarini et al. used a circular Hough transform on the 

edges extracted from a colour invariant transformation 

algorithm to detect the generic ball and a Kalman Filter 

was also applied to track and predict the position of the 

ball in the next image to reduce the computational load 

[41]. An advanced version of the Hough transform was 

proposed to detect the ball without colour information by 

using the structure tensor technique in [42], but this 

method is time consuming and cannot be run in real-time. 

 

All the algorithms mentioned above were used only in 

the perspective camera in which the field of view was far 

smaller and the image was also much less complex than 



 

that of an omnidirectional vision system. Some 

researchers have used omnidirectional vision systems to 

recognize arbitrary FIFA balls recently [5, 17, 43]. Because 

their panoramic mirrors are hyperbolic, the balls are 

imaged as circles in the panoramic images. Martins et al. 

used a canny operator to detect the edges and then 

applied the circular Hough transform to detect all of the 

candidate circles imaged by the balls [17, 43]. An effective 

validation process was proposed to discard the false 

positives. Zweigle et al. used a standard Hough 

transform to detect all the circles in the panoramic image 

and then extracted the colour histogram for each circle 

and compared it with the colour histogram learned in the 

off-line calibration process to validate the real FIFA balls 

[5]. Experimental results showed that the correct 

detection rates of these two methods were very high. 

However, all the above experiments were performed in 

very simple environments. 

 

The NuBot team also proposed an arbitrary ball 

recognition algorithm based on omnidirectional vision 

[10, 44]. It was concluded that the ball on the field could 

be imaged as an approximate ellipse in panoramic 

images, so the ball could be recognized without colour 

classification by detecting the ellipse with an image 

processing algorithm. Once the ball has been detected 

globally, the ball can be tracked in real-time by 

integrating a ball speed estimation algorithm. The 

experimental results show that the arbitrary FIFA ball can 

be recognized and tracked effectively in real-time even if 

the environments are cluttered. This algorithm does not 

need any learning or training steps and global 

recognition can be dealt with. More effective tracking 

algorithms or other recognition methods should be 

integrated into this algorithm, so the robot can recognize 

and track the ball more effectively even when the ball is 

occluded frequently. 

 

4. The estimation of the object’s motion 

 

In the highly dynamic RoboCup MSL environment, 

accurate estimation of the object’s motion, such as the 

motion velocity of the ball, the opponent robot or the 

robot itself, is the basis of success in ball passing and 

intercepting, accurate motion planning and control for 

obstacle avoidance and therefore, the best choice of robot 

behaviour. 

 

In [45], Lauer et al. assumed that the motion of the ball 

rolling on the field is a linear movement with constant 

velocity during a small piece of time, so the estimation of 

the ball velocity could be modelled as a standard linear 

regression problem that ridge regression can be used to 

solve. They then used a similar algorithm to evaluate the 

ego-motion of the robot itself and so collision with 

obstacles could be detected reliably [46]. In [47], a 

Kalman Filter was used to detect whether the ball was 

moving or stationary. In the corrector part of the Kalman 

Filter, a multilayer perceptron artificial neural network 

was integrated to reduce the affection of image noises 

caused by the motion vibration of the robot, so the 

robustness of the state detection could be improved. 

 

The estimation methods mentioned above can only be 

used in a situation where the object is located on the 

ground field. However, the ball is often lifted by the 

robots’ high kicks during RoboCup MSL competition. So 

how to estimate the ball’s motion in three-dimensional 

space is very important for improving the defence ability 

of soccer robots, especially the goalie robot. In [48, 49], a 

particle filter was applied to track the ball using 

omnidirectional vision in three-dimensional space so that 

the three-dimensional ball velocity could be estimated. In 

this method, the three-dimensional shape of the ball was 

considered and the colour histograms of the inner and 

outer boundary on the panoramic image projected by the 

ball were used to construct the observation model in 

particle filter. The experimental results show that it can 

precisely track not only the ball in three-dimensional 

space, but also the robot on the ground field. 

 

5. The visual self-localization 

 

Robots should be able to localize themselves on the field 

and perform coordination, cooperation and motion 

planning, etc. The challenging issues in visual self-

localization are as follows: during the competition, the 

robots from both teams move quickly and often in an 

unpredictable way and robots often collide, so the robot 

vision systems are often occluded by teammates or 

opponents, so wrong self-localization cannot be avoided 

completely; according to the current rules, the 



 

illumination is not specified and more and more natural 

light has been added to the field, which also brings 

challenges into visual self-localization. Robots should 

realize accurate, robust and real-time self-localization in 

this highly dynamic environment and be able to detect 

incorrect localization and then retrieve correct 

localization globally. 

 

In the past decade, four kinds of localization methods 

have been developed to solve robot self-localization in 

MSL: 

-The triangulation approach by extracting the 

landmarks like blue/yellow goals and goalposts [50, 51] 

-The geometry localization by extracting the field 

lines with a Hough transform and then identifying the 

lines using goal or goalpost information [8] 

-Monte Carlo Localization (MCL) method, also called 

the Particle filter localization method [52-54] 

-The localization approach based on matching 

optimization (for simplification, we will call it matching 

optimization localization in this paper) [55, 56]. 

 

Since 2008, colour goals have been replaced with white 

goal nets and colour goalposts have been removed, so the 

first two approaches cannot be used any more. The latter 

two approaches have become the most popular 

localization methods for soccer robots. MCL is an 

efficient implementation of general Markov localization 

based on Bayes filtering. In MCL, the probability density 

of the robot’s localization is represented as a set of 

weighted particles. During the localization process, the 

following three steps are performed iteratively: 

resampling according to particle weights, predicting new 

positions for particles according to the motion model and 

updating and normalizing particle weights using the 

sensor model. The weighted mean of all the particles is 

the localization result. The computation cost of standard 

MCL is quite high, because a large number of particles 

are needed to localize the robot well. Therefore, several 

modified versions of MCL have been proposed to 

improve efficiency by adapting the number of particles 

[54]. In [54], the number of particles can be reduced to be 

one when the localization estimation of the previous 

cycle is sufficiently accurate. 

 

Lauer et al. proposed an approach based on matching 

optimization to achieve efficient and accurate robot self-

localization [55]. The main idea is to match the detected 

visual feature points with the field information, so robot 

self-localization can be modelled as an error 

minimization problem by defining the error function. The 

RPROP algorithm was used to solve this problem to 

acquire optimal localization. The odometry information 

from motor encoders was fused to calculate a smooth 

localization by applying a simplified Kalman filter. The 

experimental results show that matching optimization 

localization outperforms MCL in accuracy, robustness 

and efficiency. 

 

There are advantages and disadvantages in MCL and 

matching optimization localization. MCL can deal with 

global localization, which means that when wrong 

localization occurs, right localization can be recovered. So 

the kidnapped robot problem can be solved effectively 

with MCL. However, a large number of particles are 

needed to represent the real posterior distribution of 

robot’s localization well and the computation complexity 

increases with the number of particles. There is a 

contradiction between accuracy and efficiency, so it is 

hard to achieve robot self-localization with high accuracy 

and high efficiency simultaneously by using MCL. In 

matching optimization localization, the accuracy of robot 

self-localization only depends on the accuracy of 

optimizing computation and visual measurements and 

matching optimization can be completed in several 

milliseconds, so this approach is a localization method 

with both high accuracy and high efficiency. However, an 

initial localization value should be given to perform the 

optimization, so it is an algorithm for localization 

tracking that cannot solve the problem of global 

localization. 

 

The NuBot team proposed a self-localization algorithm 

by combining these two approaches to maintain their 

advantages and avoid the disadvantages [57, 58]. Firstly, 

MCL was used to achieve global localization and then 

matching optimization localization was applied to realize 

accurate and efficient localization tracking with the result 

of MCL as the initial localization value. When incorrect 

localization occurs, global localization with MCL will be 

restarted to retrieve the correct localization. After 

integrating the camera parameters’ auto-adjusting 



 

method based on image entropy [24], the experimental 

results show that global localization can be realized 

effectively while highly accurate localization is achieved 

in real-time and robot self-localization is robust in the 

highly dynamic environment with occlusions and 

changing lighting conditions. 

 

6. Multi-robot cooperative sensing 

 

Multi-robot cooperative sensing is an important research 

issue in multi-robot systems and the RoboCup MSL is an 

ideal test bed for multi-robot cooperative sensing. 

Because the field of view or the sensing range of the 

robot’s vision system is limited, important objects like the 

ball are occluded frequently by teammates or opponents. 

Furthermore, all the robots are distributed and 

autonomous, so the world model achieved by every robot 

cannot be consistent with each other because of 

unavoidable sensing noises. These factors will cause 

inconsistency in the cooperative behaviours between 

robots. Realizing cooperative localization of the ball and 

other objects and cooperative self-localization between 

multiple robots can improve the sensing accuracy to 

build up a coherent world model for the whole robot 

team, which has become more and more significant for 

improving the performance of the whole robot team. 

 

In [59], Durrant-Whyte’s approach was used to fuse the 

position of the ball between teammates, so a globally 

coherent estimation about the position of the ball could 

be achieved. A multi-robot/sensor cooperative object 

detection and tracking method based on a decentralized 

Bayesian approach was proposed in [60]. A local filter 

and a team filter were included in this method. When the 

robot could see the ball, the local filter was run to fuse the 

ball information from the robot itself and teammates. 

When the robot could not detect the ball, the team filter 

was run to fuse the ball information from different 

teammates. In [61], fuzzy logic was used to fuse the 

visual observations of the ball from several robots. In this 

method, the uncertainty of the robot self-localization was 

taken into consideration, which was propagated to the 

uncertainty of the observation of the ball. The 

CAMBADA team described their work on the 

information fusion for multi-robot system in [56, 62]. A 

real-time database [63] was used to realize information 

sharing between the robots. The shared teammates’ self-

localization was used to judge whether the detected black 

obstacle is a teammate robot or an opponent robot. 

 

7. Developing trends and the Research focuses 

 

For the improvement of the soccer robots’ performance 

and the realization of the final goal of RoboCup, the 

overall developing trend in visual perception is to 

provide more and more information with high accuracy 

in real-time in the more and more complex competition 

environment for the RoboCup MSL soccer robots. The 

following issues should be the focus of future research 

into visual perception in RoboCup MSL: 

1) The robustness of the robot vision system should 

be improved to make it work reliably in indoor and 

outdoor environments with highly dynamic lighting 

conditions. 

2) Object detection, localization, prediction and 

tracking should be realized in three-dimensional space 

[19, 64, 65] because the ball is often lifted by the robots’ 

high kicks. This problem can be dealt with by 

constructing a hybrid vision system using a binocular 

stereovision system and an omnidirectional vision system, 

so the advantages of these two vision systems can be 

combined. 

3) The real-time performance and the effectiveness of 

the current algorithms for arbitrary FIFA ball recognition 

should be further improved to be able to work well in a 

complex environment with lots of disturbance. 

4) The accuracy of the estimation of the moving 

object’s velocity and acceleration in three-dimensional 

space should be improved as the competition becomes 

more and more fierce and dynamic. 

5) The robots without specific black colour should be 

recognized effectively to obtain robot identification 

information such as the number and team that the robot 

belongs to [66, 67] by introducing more novel and 

advanced theories and techniques for generic object 

recognition in the computer vision and pattern 

recognition community [68-70], so the colour-coded 

extent of the RoboCup MSL environment can be reduced, 

which will also promote the fusion of between the 

computer vision/pattern recognition community and the 

robotics community. 

6) The coherence and the sensing accuracy of each 



 

robot’s world model in a multi-robot system should be 

improved by cooperative sensing, so the dependence on 

communication can be reduced for cooperation and 

coordination in a multi-robot system. 

7) More embedded vision devices can be used in the 

RoboCup MSL [71] to augment the performance of the 

robot vision system, because the research into and the 

application of the embedded vision have become more 

and more popular in the machine vision community. 

 

8. Conclusions 

 

In this paper, we review the advancements in visual 

perception in the RoboCup MSL soccer robots achieved 

over the past decade and present the developing trends 

and research focuses. To our knowledge, this is the first 

review paper focusing on the visual perception of the 

RoboCup MSL soccer robots. Therefore, it is especially 

valuable for newcomers to robot soccer and researchers 

who are not familiar with, but are interested in, robot 

soccer. 

 

In the future, the visual perception in all the other 

RoboCup leagues and FIRA leagues should also be 

analysed and summarized, so together with this paper, a 

full panorama about the vision techniques for robot 

soccer can be provided. 
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