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Abstract In the task allocation of multi-robot system, the communication is an
important condition to ensure global consistency. Unfortunately, with the popu-
larity of WLAN, the congestion and interference among the bands are particularly
severe, making traditional task allocation methods which rely on communication
can not work. In this paper, the task allocation without communication is con-
sidered to be an incomplete information game, where game theory is employed
to realize the task allocation and cooperation of soccer robots. Firstly, the joint
probability distribution of the robot type is established according to the distance
information, which can be employed to solve the incomplete information static
game. Then the ball velocity information is added to modify the joint probability
distribution and the incomplete information dynamic game can be solved in the
same way. The experimental results show that the success rate of task allocation
without communication can be improved effectively using the proposed method.

Keywords Task allocation · Without communication · Incomplete information
game · Soccer robots

1 Introduction

Compared to single robot systems, multi-robot systems have the ability to ac-
complish more complex tasks, where the communication is a key element to make
the system run effectively [2]. With the deepening of the research on multi-robot
systems, task allocation has become a hot and difficult topic in this field [16].
Currently, task allocation in most multi-robot systems relies on the communica-
tion among the agents [27]. Furthermore, WLAN (wireless local area network) is
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the best choice for the communication due to its low cost and high bandwidth.
However, as the working environment of the robots becomes more and more com-
plicated, the amount of data transmission increases along with the increase of the
number, type and precision of the robot’s sensors. The huge communication bur-
den makes the communication among robots extremely unreliable, which affects
the task allocation of multi-robot systems. At the same time, in some complex
hostile environment, the fragile communication system takes the lead in bear the
brunt of the environmental influences. If the multi-robot system is over-relied on
the communication, it will be easy to paralyze.
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Fig. 1 The process of PRC using market-based task allocation

RoboCup [14] is a standard test-bed for multi-robot cooperation and coordina-
tion. According to the current rule of RoboCup Middle Size League (MSL), a goal
is valid only after the ball has been passed between two robot teammates. So ball
passing and receiving cooperation (PRC) is an important ability for a robot soccer
team to win the game. In this paper, the PRC among three robots will serve as
the research background. The traditional task allocation strategy can be regarded
as an optimal problem for a predefined goal. With reliable communication, a typ-
ical multi-robot task allocation method based on the market mechanism has been
widely utilized in the field of soccer robots [13,10]. In this case, the process of PRC
is illustrated in Fig.1, where the procedure in the dashed box is communication
dependent.

However, when the communication cannot work, incomplete information will
lead to a dilemma in the action choice of each robot. As a result, the multi-
robot system cannot to reach a global consistent task allocation result. Therefore,
this paper attempts to use the incomplete information game theory to solve the
communication-less task allocation problem of the multi-robot system. Particu-
larly, for static expanded games, the establishment of joint probability distribution
is simply based on the distance information among robots and ball or obstacles.
The Bayesian Nash Equilibrium of the expanded game is the task allocation result,
and the final success rate is higher than the random allocation method, but it is
still not ideal. In the subsequent dynamic expanded game, the joint probability
distribution is modified by the ball velocity. In this case, the Perfect Bayesian Nash
Equilibrium is the new result of the task allocation, and the final success rate is
further improved.

In the existing studies, there was no shortage of precedent which used the game
theory to solve the task allocation. Furthermore, the game theory is very suitable
for solving coordination among heterogeneous nodes in task allocation. And the
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incomplete information game theory is often used to solve the problem of task
allocation under unreliable communication as [6,20]. To the best of our knowledge,
we believe there is not any research on task allocation without communication
based on incomplete information game theory. This paper uses this method to
solve a simple cooperation, but also to lay a foundation for the more complex
cooperation in future research.

The remainder of this paper is organized as follows. Section 2 presents an
overview of related research on communication improvement and some novel meth-
ods of task allocation with unreliable communication in multi-agent systems (MAS).
A brief background about incomplete information game theory is given in Section
3. Then in Section 4, a game-theoretic model of multi-robot task allocation without
communication is established based on the distance and ball velocity information.
The solutions of this model in different circumstances are addressed in Section 5.
Section 6 presents three experiments to validate the proposed model and analyses
the performance. Finally, the paper is concluded in Section 7.

2 Related Work

To reduce the impact of communication problems, researchers generally use two
kinds of solutions. One is to enhance the communication capacity and reliability
by improving the communication mode [35] or framework [32]. Another method is
to reduce the dependence of the multi-robot system on the communication.

2.1 Improving the communication

Reviewing the history of the multi-robot system, the classic CEBOT (Cellular
robotic system) is the earliest attempt to realize multi-robot cooperation using
communication information in 1990 [9]. In 2008, the MinDART (Minnesota Dis-
tributed Autonomous Robotic Team) multi-robot system tries to communicate
implicitly with semaphores, and finally completes the search and rescue tasks [26].
With the popularization of WLAN, most multi-robot systems use it to realize
information exchange. Tiderko et al. proposed a combination of the new wire-
less communication protocol WNet [1] and a series of software services to realize
the information exchange among robots. In [28], the multicast communication is
applied instead of the traditional unicast communication, therefore the commu-
nication burden can be reduced and the communication delay can be lowered to
a certain extent. In [22], a model to exchange sensing, hearing and visual infor-
mation in real environments with an efficient manner is proposed which improves
the communication efficiency for the MAS. In a recent study, machine learning is
applied to improve the communication between agents in the MAS [7], where the
authors try to establish a system that enables agents to learn new concepts form
several different agents at the same time.

2.2 Reducing communication dependency

On the other hand, in some large environments, such as the complex outdoor en-
vironment with a lot of obstacles which not only block the action of the robots,
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but also reduce the reliability of the communication. In this case, the key issue
is to reduce the multi-robot system’s dependence on the communication. In [24],
the space is explored with a team of mobile robots, where two robots communi-
cate only when they are within the line of sight of each other. A Boustrophedon
decomposition method [3] is proposed to improve the coverage efficiency for the
multi-robot system while reducing the repetitive rate. In [19], researches find that
when the human is lost, they will go to a pre-agreed place to meet and re-establish
the contact. Similarly, when the robot is lost, the visual system can guide the robot
to move to a rally point which is appointed in advance thus re-enter the communi-
cation range [21,25]. In 2011, Wang et al. presented an intelligent communication
strategy, which combines explicit and implicit communication via predicting the
robot’s behavior [30,31]. Kobayashi and Hosoe designed a decentralized captur-
ing behavior for multiple mobile robots, which decides how to move only based
on the available local information from the omnidirectional cameras [15]. Gunn
et al. proposed a framework of task allocation for coordinating a varying collec-
tion of heterogeneous robots, operating in complex and dynamic environments
with unreliable communication such as disaster zones [11]. In 2016, my research
[4] attempted to use the front-camera to recognize the teammate and designed a
heuristic algorithm based on this information to carry out the cooperation without
communication. Although the traditional market-based algorithms is extremely de-
pendent on communication, Oh et al. proposed a new market-based decentralized
algorithms for the task allocation of multiple UAV (unmanned aerial vehicles) in
dynamic environments with a limited communication range [23].

The consequence caused by terrible communication is that the information up-
date is delayed or incomplete. As a result, the robots involved cannot gather the
whole situation of the tasks. Considering this incomplete information condition,
researchers attempt to use the game theory to deal with the multi-robot task allo-
cation problem. In 1985, researchers studied the game with incomplete information
from a point of view which emphasizes the empirical predictions arising from a
game-theoretic model [20]. In 2016, Eksin and Ribeiro studied the optimal behavior
problem of multi-robot cooperation under the condition of incomplete information,
where each robot could make the same decision in the absence of the information
to realize multi-robot cooperation [6]. In [29], the researchers found that the game
theory is able to re-produce the decision process of humans more accurately than a
decision model that predicts humans individually. The robots could use the game
model to understand the human avoidance behaviors, and make human-like deci-
sions during the navigation. However, the methods mentioned above cannot get
rid of the dependence on the communication thoroughly.

3 Incomplete Information Game Theory

If an agent involved in the game holds its private information which other agents
do not know, such a game is called an incomplete information game, also known as
the Bayesian game [12]. In the incomplete game theory, the “private information”
is presented as the agent’s type. So incomplete information game also means that
each agent does not know the types of other agents.
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Table 1 The notations used in game theory

Agent (i) the agent involved in the game

Type (θ) the private information owned by an agent is its “type”, θi denotes
the type of agent i, and Hi denotes the set of all possible types of an
agent (θi ∈ Hi, i = 0, 1, . . . , n). Accordingly, H−i denotes the set of
all possible types of other agents.

Action (a) every agent i has different action ai, and Ai(θi) denotes the set of all
possible actions of the agent (ai ∈ Ai(θi))

Payoffs (u) ui((ai|θi), (a−i|θ−i))is the payoff of agent i when the type of agent i
is θi and it selects the action ai. Meanwhile, the types of other agents
are θ−i, and they select the actions a−i. The payoff represents the
reasonable degree of the current selection

3.1 How to obtain the Nash Equilibrium

The notations used in the game theory are listed in Table 1. The following Example
1 illustrates how to obtain the Nash Equilibrium.

Example 1 N = {Agent1, Agent2}, H1 = {θ̇1, θ̈1}, H2 = {θ̇2, θ̈2}, A1(θ̇1) =
A1(θ̈1) = {ȧ1, ä1}, A2(θ̇2) = A2(θ̈2) = {ȧ2, ä2}, then we get the partial payoffs as
shown in Table 2. where the payoffs satisfy u11 > u13, u12 < u14, u21 > u22, u23 >
u24, u15 > u17, u16 < u18, u25 < u26, u27 < u28.

When the action of one agent is known, another agent prefers the action âi
with a larger payoff:

âi ∈ arg max
ai∈Ai(θi)

ui((a−i|θ−i), (ai|θi)) i = 1, 2. (1)

When the type of Agent1 is θ̇1 and the action a1 is selected, the larger payoff
u21 > u22 is marked. When the type of Agent2 is θ̇2 and the action a2 is selected,
the larger payoff u11 > u13 is marked. Through this method, we assume u11, u14
and u23, u21 are marked shown with underlines in Table 2.

Table 2 The partial payoffs, and u11 > u13, u12 < u14, u21 > u22, u23 > u24, u15 >
u17, u16 < u18, u25 < u26, u27 < u28

Action|Type ȧ2|θ̇2 ä2|θ̇2 ȧ2|θ̈2 ä2|θ̈2

ȧ1|θ̇1 (u11, u21) (u12, u22) / /

ä1|θ̇1 (u13, u23) (u14, u24) / /

ȧ1|θ̈1 / / (u15, u25) (u16, u26)

ä1|θ̈1 / / (u17, u27) (u18, u28)

According to Table 2, the (1) can lead to the following conclusion:
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max
a1∈A1(θ̇1)

u1((a1|θ̇1), (ȧ2|θ̇2)) = u1((ȧ1|θ̇1), (ȧ2|θ̇2)) = u11 â1 = ȧ1,

max
a2∈A2(θ̇2)

u2((ȧ1|θ̇1), (a2|θ̇2)) = u2((ȧ1|θ̇1), (ȧ2|θ̇2)) = u21 â2 = ȧ2.
(2)

As a result, a∗ = (â1, â2) = (ȧ1, ȧ2) is defined as the Nash Equilibrium of this
game. In other words, the Nash Equilibrium is the cell whose payoffs are all un-
derlined in Table 2. And a∗ satisfies:

a∗i ∈ arg max
ai∈Ai(θi)

ui((a
∗
−i|θ−i), (ai|θi)) i = 1, 2. (3)

It means neither agent can increase its payoff through changing its own action. (All
the values marked with underline in the following table of the paper are obtained
through this method)

3.2 Pure Strategy Nash Equilibrium and Bayesian Nash Equilibrium

In the complete information game, when the types of all involved agents are known
and shared, their actions are also determined immediately as (2). The unique
equilibrium point (ȧ1, ȧ2) is called Pure Strategy Nash Equilibrium (PSNE). But
the type is private information in the incomplete information game. The uncertain
types of agents may lead to a dilemma in the action selection, such as a∗ = (ȧ1, ȧ2)
when θ1 = θ̇1 and θ2 = θ̇2, but a∗ = (ä1, ä2) when θ1 = θ̈1 and θ2 = θ̈2 according
to Table 2.

Before the game, the type of agent i is inferred to be θi based on the prior
information, known as the prior probability P (θi). Such a prior information may
be derived from the experience, or it can be calculated from known information.
Under this premise, the probability of other agents select type set θ−i is P (θ−i|θi).
It is a conditional probability that satisfies the Bayesian formula:

P (θ−i|θi) =
P (θi, θ−i)

P (θi)
=

P (θi, θ−i)∑
θ−i∈H−i

P (θ−i, θi)
. (4)

Because agent i cannot confirm the types θ−i of other agents, we use the expected
payoff to describe the payoff under uncertain conditions:∑

θ−i

P (θ−i|θi)ui((a−i|θ−i), (ai|θi)). (5)

Assume a∗ = (a∗1, . . . , a
∗
i , . . . , a

∗
n) is a set of optimal action choice with the current

types, where a∗i satisfies:

a∗i ∈ arg max
ai∈Ai(θi)

∑
θ−i

P (θ−i|θi)ui((a∗−i|θ−i), (ai|θi)) i = 1, . . . , n, (6)

It is called the Bayesian Nash Equilibrium (BNE) [8]. In this application, in order
to reduce the complexity, it is assumed that each agent has the same model about
the distribution of the type (θ1, . . . , θn) before the game. In other words, the priori
probability P (θi) is the public awareness for all agents, which is known as Harsanyi
axiom. It indicates that all agents’ beliefs about the cooperation are the same.
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3.3 The static game and dynamic game

The majority of the game in the society are incomplete information based, such as
the Chicken Game [5], which is also known as the Coward Game. Another typical
example is the single-plank bridge game, where two people located on each side of
the bridge do not know each other’s current decision. If both or neither of them
step on the bridge at the same time, no one could cross the bridge. Only when
one person goes ahead, and another waits on the other side, they can reach the
destination successfully.

The incomplete information game can be further categorized into dynamic
game and static game. In the dynamic case, if one agent executes its action in
advance, other agents can observe the action and correct the corresponding prob-
ability distribution of the optional type. Afterwards, the agents choose their own
actions according to the new situation of the game. The new equilibrium of the
incomplete information dynamic game is called the Perfect Bayesian Nash Equi-
librium (PBNE). Obviously, the PRC between soccer robots can be considered
as a typical dynamic game. The ball passing action is always ahead of the ball
receiving action. The equilibriums of different games are summarized in Table 3.

Table 3 The equilibriums of different games

Abbreviation Full name The type of game

PSNE Pure Strategy Nash Equilibrium complete information game

BNE Bayesian Nash Equilibrium incomplete information static
game

PBNE Perfect Bayesian Nash Equilibrium incomplete information dynamic
game

4 Establishing the Game Model of PRC Task Allocation without
Communication

In a normal soccer robot competition, with the help of the communication, the
whole world model is known and unified for each robot. Under this condition, the
multi-robot cooperation can be regarded as a complete information game. How-
ever, when the communication mechanism is manually restricted or becomes un-
reliable, the robot can only obtain part of the information with their own sensors,
resulting an incomplete information game.

4.1 The acquired information without communication

Without communication, robots can only obtain information using their own sen-
sors, particularly the visual system. In this paper, we use our RoboCup MSL robot
[34] as the research platform, which is named NuBot and illustrated in Fig 2. As
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can be seen, the robot has an omnidirectional vision system and a RGB-D vi-
sion system for visual perception. The omnidirectional vision system is the major
sensor to realize self-localization, ball and obstacles recognition and localization
[17]. It is worth mentioning that, the main body of the robots and obstacles are
in black. So the teammates and obstacles are all indiscriminate black objects in
the omnidirectional vision system [18]. With the communication, each robot can
get the teammate’s absolute position, so the black objects except teammates are
obstacles. But this method is not applicable in a communication-less environment.
In this condition, the RGB-D (Kinect) camera is used to distinguish teammates
and obstacles by recognizing the robot’s color marker (the same color for each
team) and get the teammate’s relative position.

Omnidirectional vision system

RGB-D (Kinect) vision system

Color marker

Fig. 2 The vision systems equipped by our MSL robot

In this study, the robots cannot share their own localization, type and action
information through the communication. Each robot makes its own action selec-
tion purely depending on limited environmental information and combining the
inference of other robots’ types and actions. Thus, a typical incomplete information
game model can be established.

4.2 Basic situation of incomplete information game

There are three robots N = {Agent0, Agent1, Agent2} for PRC task allocation
without communication. Agent0 is the passing robot (Passer), Agent1 and Agent2
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are the receiving robots (Receiver). An incomplete information game is established
between the Passer and each Receiver. The relationship of the three robots involved
in the PRC is displayed in Fig 3.

Do not know the type and

ac on choice of each other

PasserReceiver

Incomplete

informa on

game

Receiver

Incomplete

informa on

game

The ac on

choice will be

in a dilemma

Select the ac on

just according to

its own type

The ac on

choice will be

in a dilemma

Fig. 3 The relationship of the three robots involved in PRC

According to the different situations, the task will be entirely different. Take
one couple (one Passer and one Receiver) of them for analysis, the Passer will be
aggressive if the situation is suitable to attack, or be conservative if the situation is
not suitable to attack. The Receiver will be assist or defense in different positions.
The task with confirmed type can be denoted as:

task = t((a0|θ0), (ai|θi)) i = 1, 2. (7)

When the type of the Passer is aggressive, it will tend to attack and pass the ball
forward to the assist to form scoring opportunities. On the contrary, when the type
of the Passer is conservative, it will tend to defense and pass the ball backward to
the defense, waiting for the next opportunity to attack. The Receiver can choose
whether to receive the ball according to its own type and the Passer’s type. The
types and actions of each robot are illustrated in Table 4.

Table 4 The types and actions of each robot

Agent(i) Passer(0) Receiver(1&2)

Types(θi)
aggressive(a) assist(A)

conservative(c) defense(D)

Actions(ai)
pass forward(f) receive(y)

pass backward(b) not receive(n)

At first, we analyze how the Receiver can make the correct action choice when
its own type is assist. The basic situation of the incomplete information game is
shown in Table 5.
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Table 5 Basic situation of the Receiver (assist) in the game

Passer (a0|θ0) f |a b|a f |c b|c

Receiver y|A (9,5) (5,3) (4,2) (3,3)

(a1|θ1) n|A (3,1) (4,2) (4,3) (7,5)

The Passer and Receiver have different payoffs when they choose different
actions under different types, which are denoted as:{

Passer: u0((a0|θ0), (ai|θi)),
Receiver: ui((a0|θ0), (ai|θi)).

i = 1, 2 (8)

In the game model, the payoffs represent the rationality of the action choice.
According to the reasonable degree, the payoff is set from 1 to 9. For example,
when the allocated task is t((f |a), (y|A)), the payoffs (u0, ui) are (9, 5), where
the front value is the Passer’s payoff in this task, and the second value is the Re-
ceiver’s payoff. As the current choice is more reasonable, the payoffs are relatively
large. On the contrary, the (3, 1) are the least payoffs for the unreasonable choice
t((f |a), (n|A)), and other cases are similar. The payoffs in Table 5 are not fixed,
but they should be reasonable according to the actual situations. For example, the
payoff of the Receiver choosing to receive should be higher than that choosing not
to receive when its type is assist and the aggressive Passer passes forward. The
current payoffs in Table 5 are set empirically. When the types of the Passer and
Receiver are determined, they can choose their actions according to the payoffs.
Each underlined value in Table 5 is the preferred action choice with larger payoff
when the other agent’s action is confirmed. For instance, when the Receiver action
is receive (y), the payoffs (u0, ui) are (9, 5) when the Passer action is pass forward
(f) or (5, 3) when the Passer action is pass backward (b). So the Passer’s prefer
action is pass forward with u0 = 9 > 5 when the Receiver action is receive. The
allocated task with chosen action is called the PSNE of the game. Through the
analysis of the basic situation, two circumstances can be found.

Circumstance 1: when the type of the Passer is aggressive, and the Receiver is
assist, t((f |a), (y|A)) is the PSNE, and the payoffs are (9, 5).

Circumstance 2: when the type of the Passer is conservative, and the Receiver
is assist, t((b|c), (n|A)) is the PSNE, and the payoffs are (7, 5).

Such incomplete information leads to the difficulty of the Receiver in decid-
ing whether to receive the ball when the type of the Passer is unknown. So the
Receiver needs to deduce the probability of the Passer choosing the aggressive or
conservative type, and then obtain correct action choice based on it.

Similarly, the basic situation is shown in Table 6 when the Receiver is defense,
and the only difference lies on the payoffs. Because the offensive desire of the
defense is low, it tends to receive the ball in the backcourt.

However, the Passer can obtain an unique action choice whether its own type is
aggressive or conservative, and the type of the Receiver is assist or defense. From
Table 5 and Table 6, it can be found that when the type of the Passer is aggressive,
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Table 6 Basic situation of the Receiver (defense) in the game

Passer (a0|θ0) f |a b|a f |c b|c

Receiver y|D (3,3) (4,2) (5,3) (9,5)

(a1|θ1) n|D (7,5) (4,3) (4,2) (3,1)

it will pass forward regardless of the type of the Receiver. On the contrary, the
Passer will pass backward when its type is conservative. So the following analysis
will focus on the Receivers.

4.3 Joint probability distributions of robot types based on distance information

Compared with the standard incomplete information game problem, the multi-
robot cooperation without communication is more complicated. In the classic in-
complete information game, each agent has a different type that other agents do
not know. But its probability distribution is known by all agents, which is the
key to solve the problem. Without communication, no effective information can
be transmitted among the agents, including the probability distribution. So the
joint probability distribution of their types is difficult to be unified.

In order to solve this problem, based on the limited environmental information
that a single robot can obtain, we propose a joint probability distribution of robot
types based on two kinds of distance information. Assuming that the Passer gets
the ball, thus the Passer and the ball are in the same position. Two distances are
defined in Fig 4.

O
Receiver

R20

R
2

B

Passer & ball

O

Fig. 4 The definition of two distances

Definition 1 Receiver2Ball (Passer) (R2B): the distance between the Receiver
and the ball (Passer).

Definition 2 Receiver2Obstacle (R2O): the distance between the Receiver and
the nearest obstacle.
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For the Receiver, the positions of the ball (Passer is dribbling) and the obstacles
can be easily obtained by the omnidirectional vision system, thus the two distances
can be directly calculated. But for the Passer, the relative position of the Receiver
can only be obtained by the RGB-D camera as illustrated in Section 4.1.

P (A, a) = R2O/R2B,
P (A, c) = R2B/R2O,

if(Receiver=assist)

P (D, a) = R2B/R2O,
P (D, c) = R2O/R2B.

if(Receiver=defense)
(9)

(9) defines the joint probability distribution (without normalization) and the re-
sults are shown in Table 7. P (A, a) represents the probability of that the type of
the Receiver is assist, meanwhile the type of the Passer is aggressive. Similarly,
P (A, c), P (D, a), P (D, c) of the Passer and Receiver are defined under different
combinations of robot types.

Table 7 Joint probability distribution based on the distance information

Passer aggressive conservative

Receiver
assist P (A, a) P (A, c)

defense P (D, a) P (D, c)

The Passer and Receiver will choose their own types according to this joint
probability distribution in different situations, and deduce each other’s probable
types under this premise. Taking the Receiver as an example, the prior probability
of the Receiver’s initial type being assist is:

P (A) = P (A, a) + P (A, c). (10)

On this premise, the probability of the Passer’s type is inferred based on condi-
tional probability:

P (a|A) = P (A, a)/(P (A, a) + P (A, c)), (11)

P (c|A) = P (A, c)/(P (A, a) + P (A, c)). (12)

In the same way, the Receiver can get the inference about the type of the Passer
when its own type is defense, and the Passer can also obtain the inference about
the type of the Receiver when its own type is selected in advance.

4.4 Joint probability distributions of robot types modified by the ball velocity

Each robot in the field can estimate the velocity of the ball after obtaining the
position of the ball. So the Receiver can further deduce the type of the Passer
according to the information of ball velocity after the Passer passes the ball, and
modify the joint probability distribution of its type. This game is defined as in-
complete information dynamic game model. The velocity includes the speed and
direction, and the ball can be considered to move with constant speed in the PRC,
so the direction is an important reference information that Receivers can use to
deduce the type of the Passer.
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Definition 3 Angle α: the angle between the direction of ball velocity and the
line from the ball to the Receiver. (0 ≤ α ≤ π)

Receiver

Passer

ball

α

v

Fig. 5 Angle α of ball velocity

For various reasons (self-localization or object localization error, kicking accu-
racy, etc), the passing line cannot point to the Receiver accurately, so we define
the angle α as shown in Fig 5 to describe the angle error. The coefficient λ is
defined as the modifying factor when the Receiver is assist or defense, as shown
in (13). 

λ(A, a) = (π − α)/π,
λ(A, c) = α/π,

if(Receiver=assist)

λ(D, a) = α/π,
λ(D, c) = (π − α)/π.

if(Receiver=defense)
(13)

The modified joint probability distributions of robot types (without normalization)
are listed in Table 8.

Table 8 The modified joint probability distributions based on the information of the ball
velocity

Passer aggressive conservative

Receiver
assist P ∗(A, a) = P (A, a) ∗ λ(A, a) P ∗(A, c) = P (A, c) ∗ λ(A, c)

defense P ∗(D, a) = P (D, a) ∗ λ(D, a) P ∗(D, c) = P (D, c) ∗ λ(D, c)

4.5 The conversion of incomplete information game model

When an agent has private information that the other agents do not know, the
basic situation of incomplete information game is uncertain and the unique PSNE
cannot be obtained. This problem was solved till Harsanyi introduced the virtual
Agent “Nature” to deal with the incomplete information game. Based on the joint
probability distribution we defined above, the incomplete information game can be
transformed to be a completely imperfect information expanded game by Harsanyi
transformation.

In our problem, the “Nature” initializes the type of the Receiver based on the
prior probability (P (θi) i = 1, 2), and then the Receiver deduces the type of the



14 Wei Dai et al.

Nature (assist)

aggressive conservative

p
as

s 
fo

rw
ar

d

p
as

s 
fo

rw
ar

d

p
ass  b

ackw
ard

p
ass  b

ackw
ard

re
ce

iv
e

re
ce

iv
e

re
ce

iv
e

re
ce

iv
e

n
o

t re
ce

ive

n
o

t re
ce

ive

n
o

t re
ce

ive

n
o

t re
ce

ive
type

action

(9, 5) (3, 1) (7, 5)(3, 3)(4, 3)(4, 2)(4, 2)(5, 3)

Fig. 6 Game tree of the Receiver (initial type: assist)

Passer based on its own initial type (assist), so the basic situation of the Receiver
in the game (Table 5) can be presented as a game tree shown in Fig 6.

There are three kinds of nodes in the game tree, and every path from the root
node to a leaf node is a kind of allocated task:

– Root node: it represents the “Nature”, and is denoted by “◦” in the figure.
All the nodes except the root node have and only have one parent node;

– Decision node: all the nodes except the root node are decision nodes. They
indicate the action selections in the game process, and are denoted by “•” in
the figure;

– Leaf node: it represents the Receiver’s action selection, and it is also a decision
node.

The Harsanyi transformation transforms the action choice under the uncertain
agents’ types into the action choice under a probability distribution of types. For
example, when the Receiver’s initial type is assist, the type of Passer is uncertain,
but the joint probability distribution of Passers’ types is known, then we could
obtain the following conversion as shown in Fig 7.

5 The Solution of PRC Task Allocation Game Model With Incomplete
Information Game Theory

In the PRC, the final solution is an allocated task related to the types of robots.
Taking one Receiver as an example, it only knows its own type θ1, but does not
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Fig. 7 The comparison before and after Harsanyi transformation

know the true type of the Passer θ0, so the Receiver will choose the action a∗1
according to the probable action of the Passer a0 to maximize its expected payoff.
The task with the actions a∗ is called BNE for the static expanded game or PBNE
for the dynamic expanded game.

5.1 The solution of the expanded game

We consider the Receiver(assist) as an example, and establish a corresponding
static expanded game model without considering the modification of joint proba-
bility distribution based on the direction of the ball velocity. For different situations
on the field, three expanded game situations are listed as follows. Then we present
a dynamic expanded game to compare with the static expanded game. The task
of the expanded game is ulteriorly denoted as:

task = t((a0|θ0 = a, a0|θ0 = c), (a1|θ1 = A)). (14)

Circumstance 1: unique BNE in static expanded game
First, we assume that the R2B is 2m, and the R2O is 0.8m, then the con-

ditional probability P (a|A) = 0.14,P (c|A) = 0.86 can be obtained according to
(9)(11)(12). As the Receiver does not know the type of the Passer, we take the
task t((f |a, f |c), (y|A)) as an example, which means that the Passer chooses to pass
forward whether the type is aggressive or conservative, and the Receiver (assist)
decides to receive the ball. According to the basic situation Table 5, the expected
payoffs of the Passer and Receiver are computed as follows:

E(u0) = P (a|A)× u0((f |a), (y|A)) + P (c|A)× u0((f |c), (y|A))

= 0.14× 9 + 0.86× 4 = 4.70,
(15)
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E(u1) = P (a|A)× u1((f |a), (y|A)) + P (c|A)× u1((f |c), (y|A))

= 0.14× 5 + 0.86× 2 = 2.42.
(16)

Similarly, the expected payoffs of other tasks can also be computed. The situation
of the static expanded game is shown in Table 9.

Table 9 Static expanded game (R2B: 2m, R2O: 0.8m)

Receiver (a1|θ1) y|A n|A

(f |a, f |c) (4.70,2.42) (3.86,2.72)

Passer (f |a, b|c) (3.83,3.28) (6.45,4.45)

(a0|θ0, a0|θ0) (b|a, f |c) (4.14,2.14) (4.00,2.86)

(b|a, b|c) (3.28,3.00) (6.59,4.59)

The Unique BNE of this game is t((b|a, b|c), (n|A)) on the basis of Section 3,
and the expected payoffs are (6.59, 4.59). In this case, regardless of the type of
the Passer being aggressive or conservative, the Receiver will not receive the ball
in order to get the maximum payoffs.

If the two distances are changed, such as the R2B becoming 1.5m and R2O
becoming 2.5m, then we can obtain a new expanded game situation, as shown in
Table 10.

Table 10 Static expanded game (R2B: 1.5m, R2O: 2.5m)

Receiver (a1|θ1) y|A n|A

(f |a, f |c) (7.67,4.21) (3.26,1.53)

Passer (f |a, b|c) (7.41,4.47) (4.06,2.06)

(a0|θ0, a0|θ0) (b|a, f |c) (4.74,2.74) (4.00,2.26)

(b|a, b|c) (4.47,3.00) (4.79,2.79)

In this case, the BNE becomes t((f |a, f |c), (y|A)), and the payoffs are (7.67,
4.21). Comparing the two allocated tasks of the Receiver, we can find that if the
Receiver is far away from the ball and closer to the obstacle, it is not suitable
to receive the ball, and vice versa. It is considered that the Receiver makes the
correct action selection in these two situations.

Circumstance 2: two BNEs with obviously different expected payoffs in static
expanded game

When the position of the Receiver is special, e.g., it is much closer to the
obstacle or the ball, there will be one BNE. However, when the R2B is 1.5m, and
the R2O is 1m, the difference between two distances is not large, and the result of
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Table 11 Static expanded game (R2B: 1.5m, R2O: 1m)

Receiver (a1|θ1) y|A n|A

(f |a, f |c) (5.54,2.92) (3.69,2.38)

Passer (f |a, b|c) (4.85,3.62) (5.77,3.77)

(a0|θ0, a0|θ0) (b|a, f |c) (4.31,2.31) (4.00,2.69)

(b|a, b|c) (3.62,3.00) (6.08,4.08)

the game becomes complicated. The situation of the expanded game is shown in
Table 11.

In this situation, the Receiver is close to the ball and obstacle, so the two
actions are both seemingly reasonable. The two BNEs are t((f |a, f |c), (y|A)) with
expected payoffs (5.54, 2.92), and t((b|a, b|c), (n|A)) with expected payoffs (6.08,
4.08) respectively. But it can be found that there is a significant gap between the
expected payoffs of the two BNEs. The expected payoffs of the latter are greater
than those of the former for the Passer and Receiver. So we consider that the BNE
with greater expected payoffs (6.08, 4.08) is better, and it is the reasonable task
allocation of this game.

Circumstance 3: two BNEs with similar expected payoffs in static expanded game
This situation is the worst in the game, such as when the R2B is 2.5m, and

the R2O is 2m. The situation of the expanded game is shown in Table 12.

Table 12 Static expanded game (R2B: 2.5m, R2O: 2m)

Receiver (a1|θ1) y|A n|A

(f |a, f |c) (5.95,3.17) (3.61,2.22)

Passer (f |a, b|c) (4.85,3.78) (5.44,3.44)

(a0|θ0, a0|θ0) (b|a, f |c) (4.39,2.39) (4.00,2.61)

(b|a, b|c) (3.78,3.00) (5.83,3.83)

In this case, the two distances are moderate. Two BNEs are t((f |a, f |c), (y|A))
with expected payoffs (5.95, 3.17), and t((b|a, b|c), (n|A)) with expected payoffs
(5.83, 3.83). There is no obvious difference between the expected payoffs of the
two BNEs, and each has its own advantage. Since we only discuss the action
selection of the Receiver, the BNE with higher expected payoff (3.83 > 3.17) of
the Receiver is chosen as the allocated task of this game.

Circumstance 4: PBNE in dynamic expanded game
In the static expanded game situation of the Receiver, only the distances of

R2B and R2O are considered. We cannot obtain the unique BNE in most cases,
although the better action choice is confirmed according the analysis mentioned
above. In the dynamic expanded game, the direction of the ball velocity is taken
into account, so the action choice will be more reasonable based on the modified
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joint probability distributions. On the basis of the Circumstance 3, assuming the
Passer passes the ball to the assist with an angle error of α (random value between
0 and 10 degrees), the situation of the dynamic expanded game is shown in Table
13. We can find that because the ball moves toward the assist, the probability of
the receiving action is enhanced, which results in a unique PBNE.

Table 13 Dynamic expanded game (R2B: 2.5m, R2O: 2m)

Receiver (a1|θ1) y|A n|A

(f |a, f |c) (3.50,1.94) (1.18,0.41)

Passer (f |a, b|c) (3.49,1.95) (1.21,0.42)

(a0|θ0, a0|θ0) (b|a, f |c) (1.96,1.17) (1.57,0.79)

(b|a, b|c) (1.95,1.18) (1.59,0.81)

5.2 Algorithms for the task allocation with game theory

The whole process of the task allocation without communication using the game
theory is summarized in the following Algorithm 1.

Algorithm 1 Task Allocation with Game Theory
Input:
u : The payoffs of robots’ actions with different types
Output:
t : The task allocation of robots

1: Obtain the self-localization lR, locations of the ball lB and obstacles lO, the velocity of
the ball vB

2: Calculate the R2B and R2O
3: Establish the joint probability distributions of robot types based on distance information
4: if Dynamic game then
5: Modify the joint probability distributions based on the vB
6: end if
7: Initialize the the type θ
8: Transform the incomplete information game to a completely imperfect information ex-

panded game by Harsanyi transformation
9: Find the BNE (static game) or PBNE (dynamic game) of the expanded game, which is

the result of the task allocation

6 Experiments and Analysis

In this section, we conduct experiments to verify the feasibility of the proposed
method. In the experiment, there are three robots (one Passer and two Receivers)
on the field without communication, and they rely on their own visual systems to
get the limited environmental information.
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For the three robots in the PRC, each cooperation requires only two robots,
so the task allocation about “who”and “how” to cooperate becomes the biggest
problem. The dimension of the RoboCup MSL field is 18m × 12m as shown in
Fig 8. The Passer (ball dribbling) will pass on any point of the field, and the
obstacles will be placed on the field randomly. In order to simplify the process of
the cooperation, and avoid the role conflict, the types of two Receivers are pre-
determined. For better attack and defense, one is assist (θ1 = A) on the frontcourt,
another is defense (θ2 = D) on the backcourt, and only one Receiver on each half
of the field. Once the half where the Receiver locates has changed, its type will
change correspondingly.

-9 9

X

Y

-6

6

O

backcourt frontcourt

Fig. 8 The field of RoboCup MSL competition (unit: m)

6.1 Task allocation based on static expanded game in Matlab simulation

The assist and defense are both Receivers, but have different types, so their
situations of incomplete information game are different. We analyze the action
selection of Receivers based on the distance information, where the joint prob-
ability distribution is not modified according to the ball velocity. Because the
Passer doesn’t have the choice dilemma, it selects the action according to its own
type with largest probability. Meanwhile, the Receivers select the action based
on the solution of game model. According to the different action choices of the
Passer and Receivers, there are eight cases in the task allocation of three robots
(task = t(a0, a1, a2) θ1 = A, θ2 = D) as shown in Table 14. Because the success
of task allocation is determined by the action choices of robots, the description of
the task allocation has omitted the type.

At first, we assume that the recognition of the ball and obstacles, as well as
the self-localization results are accurate and consistent. Then we perform 1000
independent experiments with the proposed method, where the success rate of
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Table 14 The eight cases in the task allocation

Successful Failed

t(f, y, n) t(f, n, y) t(f, n, n) t(f, y, y)

t(b, n, y) t(b, y, n) t(b, n, n) t(b, y, y)

task allocation is shown in Fig 10. As contrast, if the three robots follow the
probability of 1/2 to select the action randomly, the theoretical success rate of
task allocation will converge to 1/4 as Fig 9 illustrates.

Passer

Pass forward

Pass backward

1/2

1/2

Receiver (defense)

Receive

Not receive

1/2

1/2

Receiver (assist)

Receive

Not receive

1/2

1/2

Successful

1/8

1/8

1/4

Fig. 9 Three robots follow the probability of 1/2 to select the action randomly
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Fig. 10 Success rate of task allocation based on static expanded game

It can be seen from Fig 10 that the action choice based on the static expanded
game makes the final success rate stable at about 0.5. Although the final success
rate is still low, it can be concluded that the task allocation based on game the-
ory without communication is much better than randomly choosing actions. On
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the distribution of the failure, the majorities are t(f, n, n) and t(b, n, n), on the
other hand, the cases t(f, n, y) and t(b, y, n) do not occur in the 1000 independent
experiments.

Next, we add the appropriate noise to the object recognition and self-localization
(the noise is a random value between -0.1m and 0.1m on each axis), and perform
the above experiments again. The result is shown in Fig 11.
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Fig. 11 Success rate of task allocation based on static expanded game with added noise

From Fig 10 and Fig 11, the results are similar. The success of the task allo-
cation mainly depends on the distribution of the three robots and the obstacles.
The erroneous allocation is often due to the proximity of the two Receivers, and
the noise may make the distance between the two Receivers closer or further. So
the noise has little influence on the success rate on the basis of a large number of
experiments.

6.2 Task allocation based on dynamic expanded game in Matlab simulation

In this experiment, the modification of the joint probability distribution based on
the ball velocity is added (angle α is a random value between 0 and 10 degrees).
We also perform 1000 independent experiments with added noise. The success rate
of task allocation is shown in Fig 12.

It can be found that the modification of the joint probability distribution based
on the ball velocity is effective, and the success rate of task allocation is improved
to be higher than 0.75. The main reason is that the modification reduces the pro-
portion of t(f, n, n) and t(b, n, n) significantly. At the same time, the proportion
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Fig. 12 Success rate of task allocation based on dynamic expanded game with added noise

of t(f, y, y) and t(b, y, y) will increase slightly. These results can be explained as
follows: with the modification based on the ball velocity, the Receiver at the direc-
tion of the velocity is more likely to receive the ball, so the probability of neither
to receive is reduced greatly. On the other hand, if the two Receivers are both
near the passing path, the modification based on the ball velocity may increase
the probability of both to receive.

6.3 Comparing the performance of task allocation based on different methods in
Gazebo

In the above two experiments, the Matlab simulation environment is too ideal. Fur-
thermore, the 1000 independent experiments were performed using each method,
and we did not compare the performance of three methods in the same scene. So
we build a simulation system 1 of PRC task allocation based on Gazebo and ROS
[36,33], to further compare the performance of the three methods. The simulation
system is shown in Fig 13, where the left part is the terminal of task allocation,
which controls the process of simulation and displays the current information of
robots (position, type, action), ball (position, velocity) and obstacles (position) in
real time. The right part is the main interface to show the simulation process. In
addition, the Gazebo simulation environment also has the following characteristics:

1. It is possible to complete a larger number of independent experiments inces-
santly without human supervision.

1 The simulation system has been open source on github: https://github.com/nubot-nudt/
task_allocation_gazebo

https://github.com/nubot-nudt/task_allocation_gazebo
https://github.com/nubot-nudt/task_allocation_gazebo
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Fig. 13 The simulation system based on Gazebo and ROS

2. In order to make the simulation closer to the real situation, the Gaussian noise
is added in the localization of all objects (robots, ball and obstacles).

3. In the Gazebo, each object is no longer a point, but has the different collision
volume and inertia characteristics.

4. In the Gazebo, because of the robots’ collision volume, the distance between
them cannot be too close, so the random selection of the robots’ positions will
filter out the points whose distance is within two meters.
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Fig. 14 Comparison of performance of task allocation based on different methods in Gazebo

Similarly, we also carry out 1000 independent experiments, where task allo-
cation is performed in each scene with three different methods (random decision,
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static expanded game, dynamic expanded game) and the positions of Passer, Re-
ceivers and obstacles are changed randomly before each experiment. After about
20 hours of simulation, the statistical results are obtained as shown in Fig 14.

By comparing the results, we can find that the success rates of task allocation
based on dynamic expanded game and random decision are almost the same as the
previous experiments in Section 6.2. But the success rate of task allocation based
on static expanded game is reduced to below 0.5, which is slightly lower than the
previous experiment in Section 6.1. The reason is as follows: in the short distance
PRC, the correct allocation can almost be obtained based on the distance infor-
mation in the static expanded game. However, in this experiment, the situation of
short distance PRC is eliminated in order to avoid collisions as the characteristic
4 stated, so the success rate is reduced. The allocations based on the dynamic
expanded game with velocity information or random decision are little influenced.

6.4 Task allocation based on game theory for real soccer robots
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Fig. 15 Typical task allocations in static game. The circle represents the robot, the square
represents the obstacle, and the P is Passer, A is assist, D is defense
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After the simulation experiments, we use our RoboCup MSL soccer robots (NuBot
as shown in Fig 2) to verify the feasibility of the proposed algorithm.

Since the actual system experiment is time-consuming, we can not carry out
a large number of experiments and get the statistical results as in the simulation
system. We perform four typical task allocations in the static expanded game
as shown in Fig 15. In case (a), the Passer is closer to the assist, and there is
no obstacle around the assist. As a result, the Passer passes forward, the assist
decides to receive, and the defense decides not to receive. The situation shown in
case (b) is similar, and successful task allocation is realized in these two cases.
On the contrary, in case (c) and (d), the task allocation will fail because both
or neither of the two Receivers receive the ball at the same time (there are two
examples in each case). There is no instance for t(f, n, y) and t(b, y, n), because the
two cases rarely appear in the expanded game according to the result of Section
6.1.
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Fig. 16 Typical task allocations in dynamic game. The circle represents the robot, the square
represents the obstacle, and the P is Passer, A is assist, D is defense

The failed cases are retested in the dynamic expanded game. As Fig 16 shows,
the first two cases will be successful, but the task allocation will still fail in the two
latter cases even with the modification of the joint probability distribution based
on the ball velocity. Because there are obstacles around the Receivers in case (c) or
the angles α of the defense and assist are similar in case (d). Fortunately, according
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to Fig 12, the proportion of case (c) is 0.001 (0.001+0), and the proportion of
case (d) is 0.206 (0.109+0.097), so they will appear only in some very special
circumstances as Fig 16 demonstrates.

7 Concluding Remarks

According to the results of the previous four experiments, it can be found that
the success rate of the static expanded game is not good enough. The main rea-
son is that the lack of the communication leads to very limited information that
the participating robots can use. When the joint probability distribution of each
robot’s type is established using the distances between robots and ball or obsta-
cles, the action selection depends too much on the distance information. So when
the distribution of two Receivers are excessively similar, the task allocation in this
cooperation is failure-prone. After the ball velocity information is added to modify
the joint probability distribution, the success rate of the dynamic expanded game
is improved significantly. But if both of the Receivers are near to the path of ball
passing or obstructed by the obstacles, the dynamic expanded game also can not
guarantee a correct task allocation result.

If each robot knows others’ strategy and has a full understanding of the co-
operation situation, it can establish a certain rule to choose the rational action.
Unfortunately, it is difficult to realize in the multi-robot systems without commu-
nication. Therefore, the key to improve the success rate of task allocation is to use
a more reasonable way to establish a joint probability distribution, such as the
distance combined with velocity information is a good choice.

No communication is a situation of extreme lack of information, and the robots
simply rely on their own sensors to obtain the limited information. They cannot
have a full understanding of the world model. Each robot only has its local infor-
mation, which leads to the difficulty to obtain a consensus on the task allocation.
Incomplete information game model overcomes these shortcomings, where the lim-
ited but common information about the ball, teammates and obstacles can be used
to link all the robots involved in the cooperation to describe their types. So task
allocation for each robot is rational, and not generated randomly.

Acknowledgements Our work is supported by National Science Foundation of China (NO.
61403409 and NO. 61503401), China Postdoctoral Science Foundation (NO. 2014M562648),
and graduate school of National University of Defense Technology. All members of the NuBot
research group are gratefully acknowledged.

References

1. Bachran, T., Bongartz, H.H.J., Tiderko, A.: A framework for multicast and quality based
forwarding in manets. In: Communications and Computer Networks, pp. 120–125 (2005)

2. Balch, T., Arkin, R.C.: Communication in reactive multiagent robotic systems. Au-
tonomous robots 1(1), 27–52 (1994)

3. Choset, H., Pignon, P.: Coverage path planning: The boustrophedon cellular decomposi-
tion. In: Field and service robotics, pp. 203–209. Springer (1998)

4. Dai, W., Yu, Q., Xiao, J., Zheng, Z.: Communication-less cooperation between soccer
robots. In: Robot World Cup, pp. 356–367. Springer (2016)



Task Allocation without Communication 27

5. De Heus, P., Hoogervorst, N., Van Dijk, E.: Framing prisoners and chickens: Valence effects
in the prisoners dilemma and the chicken game. Journal of Experimental Social Psychology
46(5), 736–742 (2010)

6. Eksin, C., Ribeiro, A.: Distributed fictitious play in potential games of incomplete infor-
mation. In: Decision and Control (CDC), 2015 IEEE 54th Annual Conference on, pp.
5190–5196. IEEE (2015)

7. El-Sherif, S.M., Far, B., Eberlein, A.: Machine learning module to improve communication
between agents in multi-agent system. In: Machine Learning and Applications (ICMLA),
2012 11th International Conference on, vol. 2, pp. 295–300. IEEE (2012)

8. Fujiwara-Greve, T.: Bayesian nash equilibrium. In: Non-Cooperative Game Theory, pp.
133–151. Springer (2015)

9. Fukuda, T., Kawauchi, Y., Asama, H.: Analysis and evaluation of cellular robotics (cebot)
as a distributed intelligent system by communication information amount. In: Intelligent
Robots and Systems’ 90.’Towards a New Frontier of Applications’, Proceedings. IROS’90.
IEEE International Workshop on, pp. 827–834. IEEE (1990)

10. Gage, A., Murphy, R., Valavanis, K., Long, M.: Affective task allocation for distributed
multi-robot teams (2004)

11. Gunn, T., Anderson, J.: Effective task allocation for evolving multi-robot teams in dan-
gerous environments. In: Proceedings of the 2013 IEEE/WIC/ACM International Joint
Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume
02, pp. 231–238. IEEE Computer Society (2013)

12. Harsanyi, J.C., Selten, R., et al.: A general theory of equilibrium selection in games. MIT
Press Books 1 (1988)

13. Kalra, N., Martinoli, A.: Comparative study of market-based and threshold-based task
allocation. In: Distributed autonomous robotic systems 7, pp. 91–101. Springer (2006)

14. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup
initiative. In: Proceedings of the first international conference on Autonomous agents, pp.
340–347. ACM (1997)

15. Kobayashi, Y., Hosoe, S.: Cooperative enclosing and grasping of an object by decentralized
mobile robots using local observation. International Journal of Social Robotics 4(1), 19–32
(2012)

16. Kraus, S., Plotkin, T.: Algorithms of distributed task allocation for cooperative agents.
Theoretical Computer Science 242(1), 1–27 (2000)

17. Lu, H., Li, X., Zhang, H., Hu, M., Zheng, Z.: Robust and real-time self-localization based
on omnidirectional vision for soccer robots. Advanced Robotics 27(10), 799–811 (2013)

18. Lu, H., Yang, S., Zhang, H., Zheng, Z.: A robust omnidirectional vision sensor for soccer
robots. Mechatronics 21(2), 373–389 (2011)

19. Meng, Y., Nickerson, J.V., Gan, J.: Multi-robot aggregation strategies with limited com-
munication. In: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference
on, pp. 2691–2696. IEEE (2006)

20. Milgrom, P.R., Weber, R.J.: Distributional strategies for games with incomplete informa-
tion. Mathematics of operations research 10(4), 619–632 (1985)

21. Nickerson, J.V.: A concept of communication distance and its application to six situations
in mobile environments. IEEE Transactions on Mobile Computing 4(5), 409–419 (2005)

22. Noroozi, A.: A novel model for multi-agent systems to improve communication efficiency.
In: Computer Engineering and Technology, 2009. ICCET’09. International Conference On,
vol. 2, pp. 189–192. IEEE (2009)

23. Oh, G., Kim, Y., Ahn, J., Choi, H.L.: Market-based task assignment for cooperative timing
missions in dynamic environments. Journal of Intelligent and Robotic Systems 87(1), 97–
123 (2017)

24. Rekleitis, I., Lee-Shue, V., New, A.P., Choset, H.: Limited communication, multi-robot
team based coverage. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, vol. 4, pp. 3462–3468. IEEE (2004)

25. Roy, N., Dudek, G.: Collaborative robot exploration and rendezvous: Algorithms, perfor-
mance bounds and observations. Autonomous Robots 11(2), 117–136 (2001)

26. Rybski, P.E., Larson, A., Veeraraghavan, H., Anderson, M., Gini, M.: Performance eval-
uation of a multi-robot search & retrieval system: Experiences with mindart. Journal of
Intelligent and Robotic Systems 52(3-4), 363–387 (2008)

27. Sun, L., Zhang, Y.: Summary of multi-robot communication technology. China Science &
Technology Information (2008)



28 Wei Dai et al.

28. Tiderko, A., Bachran, T., Hoeller, F., Schulz, D.: Rosea framework for multicast communi-
cation via unreliable networks in multi-robot systems. Robotics and Autonomous Systems
56(12), 1017–1026 (2008)

29. Turnwald, A., Althoff, D., Wollherr, D., Buss, M.: Understanding human avoidance be-
havior: Interaction-aware decision making based on game theory. International Journal of
Social Robotics 8(2), 331–351 (2016)

30. Wang, T., Dang, Q., Pan, P.: A predict-fuzzy logic communication approach for multi
robotic cooperation and competition. JCM 6(3), 225–231 (2011)

31. Wang, T., Dang, Q., Pan, P.: A multi-robot system based on a hybrid communication
approach. Studies in Media and Communication 1(1), 91–100 (2013)

32. Xiang, Z., Wang, Q., Wen, H.: The study of multi-robot communication of autonomous
soccer robots based on c/s mode. In: Multimedia Technology (ICMT), 2010 International
Conference on, pp. 1–4. IEEE (2010)

33. Xiao, J., Xiong, D., Yao, W., Yu, Q., Lu, H., Zheng, Z.: Building software system and
simulation environment for robocup msl soccer robots based on ros and gazebo. In: Robot
Operating System (ROS), pp. 597–631. Springer (2017)

34. Xiong, D., Xiao, J., Lu, H., Zeng, Z., Yu, Q., Huang, K., Yi, X., Zheng, Z.: The design
of an intelligent soccer-playing robot. Industrial Robot: An International Journal 43(1),
91–102 (2016)

35. Yanco, H., Stein, L.A.: An adaptive communication protocol for cooperating mobile robots.
In: Meyer, JA, HL Roitblat, and S. Wilson (1993) From Animals to Animats 2. Proceedings
of the Second International Conference on Simulation of Adaptive Behavior. The MIT
Press, Cambridge Ma, pp. 478–485 (1993)

36. Yao, W., Dai, W., Xiao, J., Lu, H., Zheng, Z.: A simulation system based on ros and
gazebo for robocup middle size league. In: Robotics and Biomimetics (ROBIO), 2015
IEEE International Conference on, pp. 54–59. IEEE (2015)


	Introduction
	Related Work
	Incomplete Information Game Theory
	Establishing the Game Model of PRC Task Allocation without Communication
	The Solution of PRC Task Allocation Game Model With Incomplete Information Game Theory
	Experiments and Analysis
	Concluding Remarks

