
The Design of a Fully Autonomous Robot System
for Urban Search and Rescue

Yi Liu, Yuhua Zhong, Xieyuanli Chen, Pan Wang,
Huimin Lu, Junhao Xiao, Hui Zhang

College of Mechatronics and Automation,
National University of Defense Technology

Changsha, Hunan, China, 410073

lewis_nudt@foxmail.com, lhmnew@nudt.edu.cn
junhao.xiao@ieee.org, zhanghui_nudt@126.com

 Abstract - Autonomous robots in urban search and rescue
(USAR) have to fulfill several tasks at the same time: localization,
mapping, exploration, object recognition, etc. This paper de-
scribes the whole system and the underlying research of the
NuBot rescue robot for participating RoboCup Rescue competi-
tion, especially in exploring the rescue environment autonomous-
ly. A novel path following strategy and a multi-sensor based con-
troller are designed to control the robot for traversing the un-
structured terrain. The robot system has been successfully ap-
plied and tested in the RoboCup Rescue Robot League (RRL)
competition and won the championship of 2016 RoboCup China
Open RRL competition.

 Index Terms - USAR; autonomous navigation; RoboCup;
exploration planner.

I. INTRODUCTION

A. Key Abilities of Autonomous USAR Robots

Due to natural disasters, terrorist activities and a variety of
other incidents, disasters occur frequently around the world.
Searching immediately to locate victims in collapsed buildings
is the most effective way to save their lives. Rescue robots can
be used to explore the unknown disaster environment which is
dangerous for human beings, acquiring and sending back
sensor data such as thermal and color videos. While these ro-
bots will remain mainly remote-controlled in the near future
when used in real disaster sites, increasing the autonomy level
is an efficient way to relieve the operator from the exhausting
task of controlling the robot and may has the potential to vast-
ly improve the capabilities of robots used for disaster response
in the future.

Key abilities for fully autonomous rescue robots include
building maps while localizing themselves, determining the
next exploring target point, planning the path, following the
path by motion control, as well as detecting and locating vic-
tims.

B. Overview of the RoboCup RRL Competition

The RoboCup Rescue Robot League (RRL) competition
[1] simulates a rescue operation after an earthquake. The
building partially collapses due to the earthquake. The inci-
dent commander in charge of rescue operations at the disaster
site, fearing secondary collapses from aftershocks, asks for
teams of robots to immediately search the interior of the build-

ing for victims. The mission for the robots and their operators
is to find victims, obtain their situations, states, and locations,
and then report their findings in a map of the building with
associated victim data. The section near the building entrance
appears relatively intact while the interior of the structure ex-
hibits increasing degrees of collapses. A sample arena of the
RoboCup RRL competition is shown in Fig. 1. Robots must
negotiate and map the lightly damaged areas prior to encoun-
tering more challenging obstacles and rubble. This competi-
tion provides a standard test bed for robots that can autono-
mously explore unknown and unstructured environments.

Fig. 1 A sample arena of the RoboCup RRL competition.

After participating in the RoboCup RRL competition for
almost ten years, we focus on increasing the robot autonomy
level for Urban Search and Rescue (USAR) in recent years. In
2016, our team NuBot won the championship of the RoboCup
China Open RRL competition with the ability to explore the
complex and unknown rescue environment fully autonomous-
ly.

C. The Contribution of This Paper

The main contribution of this paper is to provide a suc-
cessful autonomy solution for USAR robots especially in the
rescue environment filled with uneven terrains with ramps.

D. The Arrangement of This Paper

In this paper we present recent advances in USAR robots,
provide an overview of our autonomous robot system and
present an efficient control strategy we use.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the robot hardware and soft-
ware of our rescue robot, where Robot Operating System
(ROS) has been used to build the software. The HectorSLAM
algorithm and our custom designed LiDAR stabilizer are in-
troduced in Section III. In Section IV, an autonomous explora-
tion approach is discussed and a multi-sensor based controller
is proposed to drive the robot to follow the trajectory in chal-
lenging terrains with high robustness. Section V presents how
to detect and localize the simulated victims using thermal
camera. Afterwards, we assess the robot performance in the
rescue scenarios of our laboratory and the 2016 RoboCup
China Open RRL competition. Finally Section VII concludes
the paper.

II. SYSTEM OVERVIEW

 Many impressive results about the design of the robot
system for USAR missions have been achieved, and various
robots have been developed for USAR tasks. In early years,
rescue robots were usually teleoperated by human operators.
With robotic technology advances significantly, the robot’s
autonomy level has been improved greatly. We also designed
our rescue robot system to realize fully autonomous USAR.

A. Hardware

 Our robot uses a tracked platform, as shown in Fig. 2.
The tracked robot with front and back sub-tracks (flippers)
provides effective mobility, and it is the mostly common plat-
form used in the RoboCup RRL competitions and also in the
real rescue missions.

Fig. 2 NuBot participating the RoboCup China Open 2016 in Hefei.

 In order to complete the USAR missions, the mobile ro-
bot must be equipped with an onboard computer and various
sensors for mapping, navigation and victim detection.
 The robot uses a state-of-the-art industrial grade computer
from Beckoff. The computer (Intel Core i7) provides enough
processing ability to deal with huge data and the robustness
when traversing challenging terrains.
 The robot is equipped with a Hokuyo UTM-30LX Light
Detection And Ranging (LiDAR). The LiDAR is suitable for

mobile robots because of its low power consumption and
compact size. The field of view of the scanner is 270o, the
scanning distance is 30m and the scanning frequency is 40Hz.
The performance of Hokuyo UTM-30LX was evaluated in
[2], where the results show that Hokuyo UTM-30LX can be
used for distance measurement, and the quality of the acquired
data is almost the same on different surfaces, colors and even
under different illumination.
 In order to measure the robot’s pose when exploring in
the unstructured and uneven terrains, a 6DOF inertial sensor,
“Xsens MTI-100” has been integrated. MTI-100 is a miniature
Inertial Measurement Unit (IMU) that outputs yaw angle with
no drift, and provides a calibrated three-axis acceleration, an-
gular velocity and magnetic field strength.
 Visual perception is the most important source for victim
detection. Therefore a pan-tilt-zoom camera is mounted on the
tracked platform. Besides, a low-cost USB video camera and a
Thermal Image Optris PI640 has been employed. The visual
sensors are fused to detect and localize victims.

B. ROS-based Software

 Robot Operation System (ROS) [3] is used to build the
software for our rescue robot. It is the most popular robotic
framework nowadays. It provides open source tools, libraries,
and drivers for robotics researches and applications. ROS en-
ables researchers to quickly and easily conduct experiments.
The software architecture of our rescue robot is shown in Fig.
3.

Mapping
Exploration

Planner
Exploration
Controller

Pose
Estimation

LiDAR
Stabilizer

Victim
Detection

Victim
Localization

LiDAR Scan

IMU Data

Thermal Image

Robot Pose

2D Map Path

Object Information

Fig. 3 The software architecture based on ROS. ROS nodes are represented by
rectangles, topics by arrow-headed and services by diamond-headed lines.
Services are originated at the service caller.

III. 2D SLAM WITH ACTIVE LIDAR STABILIZER

A. 2D SLAM

The ability to build a map of the unknown environment
and localize itself, named as SLAM, is one of the most im-
portant abilities for robots to operate fully autonomously in
USAR scenarios. Most existing 2D SLAM algorithms are
based on probabilistic representations. The advantage is the
robustness to measurement noises and the capability to for-
mally represent uncertainty in the measurement and estimation
process. Furthermore, most probabilistic SLAM algorithms
are built upon the Bayes rule. HectorSLAM [5] and
Gmapping [6] are two typical Bayes based methods, and open
source implementations are available as ROS packages.

 HectorSLAM is a 2D SLAM system based on robust scan
matching [5]. This module focused on the real-time estimation
of the robot movement, making use of LiDARs with high up-
date rate and low measurement noise. The odometry infor-
mation is not required, which gives the possibility to imple-
ment this approach in tracked robots traveling in uneven ter-
rains. The 2D pose estimation is based on the optimization of
the alignment of beam endpoints with the map obtained so far.
The endpoints are projected in the actual map where the occu-
pancy probabilities are estimated. Scan matching is solved
using a Gaussian-Newton approach, which can obtain the rig-
id transformation that best fits the laser beams with the map.
In addition, a multi-resolution map representation is used to
avoid getting stuck in the local minima.
 Gmapping is a widely used SLAM package [6] in ROS.
This algorithm is based on Rao-Blackwellized Particle Filter
(PF) . The algorithms based on PF generally requires a large
number of particles to achieve accurate estimation results,
which increases the computational load. It combines odometry
and scan matching in order to reduce the number of particles.
 However, in the rescue environment, the odometry is un-
reliable, which makes Gmapping not suitable. Different from
Gmapping, HectorSLAM relies only on scan matching, which
is an advantage in USAR tasks. Fig. 4(a) and Fig. 4 (b) show
the SLAM results of HectorSLAM in the office environment
and the rescue environment, respectively. The mapping result
in Fig. 4(b) contains distortions, , which is because the rescue
environment is unstructured. In the next subsection, we will
introduce how to deal with this problem.

Fig. 4 The SLAM results of HectorSLAM in the office environment with even
terrains and the rescue environment with uneven terrains.

B. Active LiDAR Adjustment

 Robots for USAR are usually used in unstructured envi-
ronments with uneven terrains. Therefore the sensor data
might be spurious if the sensors are rigidly coupled to the ro-
bot. The challenge of uneven terrains has been added into the
RoboCup rescue competition by using 10° and 15° pitch/roll
ramps since 2007 [4].
 One way to overcome these problems is to use a 3D
LiDAR instead of a 2D LiDAR. The registration of the 3D
scans would build a exact global map, and the pose of the ro-
bot can also be calculated. However, it spends much more
time to do the 3D scan registration with the global map than
the scanning and matching in 2D.

 As a compromise, we have designed a cheap stabilizer
with two servos to adjust the orientation of the 2D LiDAR,
based on the readings from the MTI sensor As a result, the 2D
LiDAR can be kept on the horizontal plane even when the
robot is traversing on uneven terrains. The rotation/tilt stabi-
lizer unit mounted on the robot is shown in Fig. 2. Fig. 5
shows the result of HectorSLAM with LiDAR Stabilizer.

Fig. 5 The SLAM results of HectorSLAM with LiDAR Stabilizer in the office
environment with even terrains and the rescue environment with uneven ter-
rains.

IV. AUTONOMOUS EXPLORATION

 A fully autonomous USAR robot must explore the rescue
environment and search victims autonomously. This problem
can be separated into three questions:
 1) Selecting a target point: Where should the robot go

next?
 2) Planning a path: Which way should the robot take to

go to the target?
 3) Computing the control command: What action should

the robot do?

A. Frontier-based Exploration

 The primary problem of autonomous exploration is: based
on existing knowledge about the real world, where should the
robot move to efficiently acquire new information?

Yamauchi proposed a frontier-based approach in [7] to
determine the next exploration target. The approach uses the
occupancy grid. When a grid map has been built, all the grid
can be divided into three categories: Free, Unknown and Oc-
cupied. The primary idea is as follows: in order to get new
information, going to a frontier which separates known re-
gions from unknown regions. The frontier here is a cell in the
occupancy grid which is marked as free but has a neighboring
unknown cell (Fig. 6) . A segment of adjacent frontiers is con-
sidered as a potential target if it is large enough for the robot
getting though. If more than one potential target are detected,
the closest one is selected. Fig. 7 shows the result of extracted
frontiers.

A disadvantage of directly extracting frontier from the
original map is that the extracted frontier may be close to ob-
stacles. To overcome this problem, the Inflated Obstacle
method has been utilized. This method will transform the cells
within a certain distance to obstacles as Occupied, thus the
frontiers will not be extracted in these areas. Fig. 8 shows the

result of extracted frontiers in the occupancy grid with inflated
obstacles.

Fig. 6 Frontier detection. (a) The green grid cell has a neighboring Unknown
cell, so it is a frontier; (b) The green grid cell has no any neighboring Un-
known cell, so it is not a frontier.

Fig. 7 Occupancy grid and extracted frontier. (a) Black area is Occupied,
white area is Free and gray area is Unknown;. (b) Red point are detected as
frontiers.

Fig. 8 Occupancy grid with inflated obstacles and the extracted frontier. In (a),
green areas are the inflated obstacles.

 Unknown areas could be occupied or free areas, which
have not been known by robots. In the narrow rescue envi-
ronment, the probability of the unknown areas being obstacles
is quite high. Furthermore, the computational complexity of
path planning will increase as the scale of the built map, so the
frequency of path planning will not be high for autonomous
UASR robots. If the robot takes one frontier as the target
point, and the frequency of path planning is low, or the robot’s
moving distance to the target is small, the robot may crash
with unknown obstacles.

Fig. 9 shows such a example where the robot may be
stuck. The red point represents the robot’s position, and the
black curve represents the planned path. In this situation, be-
cause of the low frequency of path planning, the robot will not
re-plan the path before arriving the target point, so the robot
may crash with obstacles. The worst result is that the robot
can not move any more.

To deal with this problem, we proposed a method named
as Fake Inflated Obstacle, where those extracted frontiers lo-
cated between free areas and unknown areas are considered as

obstacles, then these obstacles are inflated, and finally new
frontiers can be searched between these inflated areas and free
areas. Using this method, the distances between the target
point and the actual obstacles are enough for our robot’s safe
movement. The extracted frontiers from fake inflated obsta-
cles are shown in Fig 10.

Fig. 9 A example of the robot being stuck

Fig. 10 Occupancy grid with fake inflated obstacles and the extracted frontier.

B. Planning the Optimal Path

When a target has been selected by the frontier-based
method, the problem turns into optimal path planning. Javis
and Byrne [8] proposed the distance transform to find the
closest way from an arbitrary starting point to a fixed target.
The distance transform of an occupancy grid calculates the
cost to reach the target cell for each free cell. The cost be-
tween two cells (without obstacles between them) can be the
chessboard distance, city block distance, or the Euclidian dis-
tance. After the distance transform has been applied for each
cell of the grid, the shortest path from any cell to the target
cell can be searched simply by following the steepest gradient.
The chessboard distance d of a cell ci,j to target cell ca,b is de-
fined as follows:

() (), , , ,() () () ()a b i j a b i jd c x c x c y c y= − + − (1)

The distance transform always chooses the shortest way
between two cells. But this way is not always desirable for
robots, because it may lead the robot crash against the wall or
go through a narrow passage. In [9] and [10], a security com-
ponent has been added to the distance transform, i.e., an ob-
stacle transform which calculates the distance to the closest
obstacle for each cell. The path transform Φ of a cell c to
reach the target cell cg is then defined as follows:

(, c) min (C) ()
cg
c i

g danger i
C c C

c l c c
χ

α
∈ ∈

 
Φ = +  

 
 (2)

with
cg

c
C χ∈ is the set of all possible paths from c to cg, l(C)

the length of the path C, cdanger(ci) the cost function for the

“discomfort” of entering cell ci, and α a weighting factor ≥ 0.
The length l(C) of the path C can be calculated incrementally:

1

0 1
0

() (, ,) (,)
n

n i i
i

l C l c c d c c
−

+
=

= = (3)

where d denotes the distance between two cells (e. g. the
chessboard distance).

The “discomfort” cost cdanger of a cell is calculated based
on the obstacle transform of this cell. For distances to the wall
that are smaller than half of the size of the robot, the cost
should be very high. Zelinsky’s choice for such a cost func-
tion is given in (4).

()3
(() , if ()

()
0, else

i i
danger i

X c c X
c c

 − Ω Ω <== 


 (4)

The constant X determines the minimum distance to obstacles,
which depends on the size of the robot, the accuracy of the
sensors, and the map. The α in (2) determines how far the
path keeps away from obstacles.

C. Controller

 Based on the SLAM and exploration planning algorithms
mentioned above, the robot can build the 2D grid map and
plan a path to the next frontier. Ideally, the robot can explore
the environment autonomously after integrating a simple con-
troller to compute the commands to drive itself. However,
different from virtual simulation environment or ideally in-
door scenarios, real disaster sites are filled with unstructured
terrains. Coupled with the inaccuracy of tracked vehicles, it is
quite challenging to realize accurate control of the robot to
follow the exploration path. A simple controller, which direct-
ly produces the velocity command by calculating the biases of
current position and orientation of the robot with the target,
can not perform well in real world experiments. Therefore, we
propose a novel controller combining the exploration planer
and multi-sensor information to overcome the influence of
challenging terrains. The inputs of the controller are LiDAR
data, IMU data, the current position and orientation of the
robot and the target.
 Firstly, we propose a piece-wise method to evaluate
whether the robot has reached the target point:
1) If the robot is exactly close to the target point, the target

is reached. The condition of target reached is as follow:

2
min

22x dy ≤Δ+Δ ;

2) If the robot is within a certain distance to the target point,
and the robot’s current orientation is within a certain an-
gle of the target orientation, the goal is reached. The con-
dition of target reached is as follow:

θα ≤Δ≤Δ+Δ anddyx 222

where xΔ and yΔ denote the biases of position between the

robot and the target. mind and d are the tolerances of transla-

tion, and d<mind . αΔ is the bias of angle between the robot

and the target and θ is the tolerance of orientation.
 This kind of evaluation can make the robot avoid wasting
time to move to very close target points. The robot’s velocity
commands can be generated by computing the bias of the ro-
bot pose and the target point.
 Secondly, the point cloud data acquired by the LiDAR are
used to compute the “acting force” of the obstacles to the ro-
bot. The ideal case is that the robot can keep such a distance to
the obstacles that the robot will not crash with the obstacles,
and at the same time, the robot can detect and recognize the
landmark information located on the obstacles. Therefore, the
“acting force” of each point to the robot is computed accord-
ing to the following principle:

1) the robot is encouraged to stay away from obstacles at
a distance of dopt and

2) the robot will not get closer than dmin.
 The acting force is then computed as follows:

() ()








>
≤<−

≤∞−
=

maxmax

axmin
3

min

dd if

d if

dd if

F

ddddpf mopti (5)

 This force is used to compensate the robot’s velocity
commands in the controller, so the robot will be kept at a cer-
tain distance to the obstacles. Then the acquired IMU infor-
mation such as the robot’s roll and pitch angles can be used to
evaluate the terrains. According to the robot’s roll and pitch
angles, we design the following strategy to improve the ro-
bustness in traversing the uneven terrains:
1) When the robot is on the uphill terrain, the robot’s linear

velocity commands are added by ()αcos/'
xx vv = to

make sure that the robot can traverse the uphill terrain

successfully. Where '
xv and xv denote the forward direc-

tion linear velocity command, and α is the angle of pitch.
2) When the robot is turning on the tilted terrain, the robot’s

angular velocity commands are added by

)cos(/'
z βωω z= to make sure that the robot can make a

turn on the tilted ramp reliably. Where '
zω and zω denote

the angular velocity command, and β is the angle of roll.

3) When the angle of roll or pitch is too large, which means
that the robot may turnover, the robot should move to the
opposite direction.

 The experimental results show that using this kind of
multi-sensor based controller, the exploration efficiency and
robustness can be improved, and the robot can explore the full
rescue environment of the 2016 RoboCup China Open RRL
competition, as shown in the accompanying video.

V. VICTIM DETECTION AND LOCALIZATION

 Reliable detection of human victims in unstructured post-
disaster environments is a key issue for USAR robots, which
is challenging in the rescue environment with low illumina-

tion, dust and smoke when using normal visible light camera.
Therefore we use a thermal camera (Optris P640) to recognize
the simulated victims autonomously using a blob detection
algorithm. After segmenting the thermal image with a thresh-
old like 36o, the connected warm regions can be regarded as
victims.
 After detecting the victim successfully, the position of the
victim should be estimated on the built map. The image coor-
dinate of the victim can be used to evaluate the victim’s direc-
tion in the camera coordinate system. Because the victim
should be located on the obstacles, using the victim’s direction
and the camera’s orientation, the victim’s position can be es-
timated by searching the nearest obstacle on the built map
along the victim’s direction.

Fig. 11 The result of victim detection and localization, where the found victim
is marked by red dot in the map.

VI. EXPERIMENTAL RESULTS

The RoboCup RRL competition provides a systematic
benchmark for testing and evaluating teleoperated and auton-
omous USAR robots in a simulated post-disaster environment.
We present the results achieved when participating the
RoboCup China Open 2016. In this competition we won the
championship based on exploring the rescue environment au-
tonomously.

Figure 12 shows the map of explored arena and the mark-
ing of the found victims and recognized QR-codes on the
map. It should be noted that the robot successfully found 5
victims autonomously and the total number of victims was 8
in the final competition. The number of the recognized QR-
codes correlates with the fraction of the arena that was ex-
plored by the robot during the competition. Videos of the final
competition and experiments are available on our website:

 http://www.trustie.net/organizations/23/videos

VII. CONCLUSION

Autonomous capabilities of rescue robots in USAR tasks
offer an exciting prospect of rescue operations. This paper
describes the approaches and technical achievements in de-
signing the fully autonomous USAR robot system of the Team
NuBot, which won the 2016 RoboCup China Open RRL
championship.

Fig. 12 The autonomous exploration results of our rescue robot participating
the 2016 RoboCup China Open RRL. The starting pose of the robot is marked
by yellow arrows, the detected victims marked by red dot, and the recognized
QR-codes marked by blue dot. In the final competition the robot discovered 5
victims correctly and autonomously.

ACKNOWLEDGMENT

Our work is supported by National Science Foundation of
China (No. 61403409 and No. 61503401) and the graduate
school of National University of Defense Technology.

REFERENCES

[1] Sheh, Raymond, et al. Advancing the State of Urban Search and Rescue
Robotics Through the RoboCupRescue Robot League Competition. Field
and Service Robotics. Springer Berlin Heidelberg, 2014: 127-142.

[2] DEMSKI P, MIKULSKI M, KOTERAS R. Characterization of Hokuyo
UTM-30LX laser range finder for an autonomous mobile robot. Advanced
Technologies for Intelligent Systems of National Border Security. Spring-
er. 2013: 143-53.

[3] Quigley, Morgan, et al. "ROS: an open-source Robot Operating System."
ICRA Workshop on Open Source Software 2009.

[4] Pellenz, Johannes, and D. G. D. Paulus. "Robbie: A Fully Autonomous
Robot for RoboCupRescue." Advanced Robotics, 23(9): 1159-1177,
2009.

[5] Kohlbrecher, Stefan, et al. "A flexible and scalable SLAM system with
full 3D motion estimation." Safety, Security, and Rescue Robotics
(SSRR), 2011 IEEE International Symposium on IEEE, 2011: 155-160.

[6] Grisetti, G., C. Stachniss, and W. Burgard. "Improved Techniques for
Grid Mapping With Rao-Blackwellized Particle Filters." Robotics IEEE
Transactions on, 23(1): 34-46, 2007.

[7] Yamauchi, B. "A frontier-based approach for autonomous exploration."
IEEE International Symposium on Computational Intelligence in Robotics
and Automation, 1997. Cira'97. Proceedings IEEE, 1997: 146-151.

[8] R. A. Jarvis and J. C. Byrne. Robot navigation: Touching, seeing an
knowing. In Proc. Australian Conf. on Artificial Intelligence, Melbourne,
Australia, 1986.

[9] Alexander Zelinsky. Robot navigation with learning. Australian Computer
Journal, 20(2): 85-93, 1988.

[10] Alexander Zelinsky. Environment Exploration and Path Planning Algo-
rithms for a Mobile Robot using Sonar. PhD thesis, Wollongong Universi-
ty, Australia, 1991.

