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 Abstract - Autonomous robots in urban search and rescue 
(USAR) have to fulfill several tasks at the same time: localization, 
mapping, exploration, object recognition, etc. This paper de-
scribes the whole system and the underlying research of the 
NuBot rescue robot for participating RoboCup Rescue competi-
tion, especially in exploring the rescue environment autonomous-
ly. A novel path following strategy and a multi-sensor based con-
troller are designed to control the robot for traversing the un-
structured terrain. The robot system has been successfully ap-
plied and tested in the RoboCup Rescue Robot League (RRL) 
competition and  won the championship of 2016 RoboCup China 
Open RRL competition. 
 

 Index Terms - USAR; autonomous navigation; RoboCup; 
exploration planner. 
 

I.  INTRODUCTION 

A. Key Abilities of Autonomous USAR Robots 

Due to natural disasters, terrorist activities and a variety of 
other incidents, disasters occur frequently around the world. 
Searching immediately to locate victims in collapsed buildings 
is the most effective way to save their lives. Rescue robots can 
be used to explore the unknown disaster environment which is 
dangerous for human beings,  acquiring and sending back 
sensor data such as thermal and color videos. While these ro-
bots will remain mainly remote-controlled in the near future 
when used in real disaster sites, increasing the autonomy level 
is an efficient way to relieve the operator from the exhausting 
task of controlling the robot and may has the potential to vast-
ly improve the capabilities of robots used for disaster response 
in the future. 

Key abilities for fully autonomous rescue robots include 
building maps while localizing themselves, determining the 
next exploring target point, planning the path, following the 
path by motion control, as well as detecting and locating vic-
tims. 

B. Overview of the RoboCup RRL Competition 

The RoboCup Rescue Robot League (RRL) competition 
[1] simulates a rescue operation after an earthquake. The 
building  partially collapses due to the earthquake. The inci-
dent commander in charge of rescue operations at the disaster 
site, fearing secondary collapses from aftershocks, asks for 
teams of robots to immediately search the interior of the build-

ing for victims. The mission for the robots and their operators 
is to find victims, obtain their situations, states, and locations, 
and then report their findings in a map of the building with 
associated victim data. The section near the building entrance 
appears relatively intact while the interior of the structure ex-
hibits increasing degrees of collapses. A sample arena of the 
RoboCup RRL competition is shown in Fig. 1. Robots must 
negotiate and map the lightly damaged areas prior to encoun-
tering more challenging obstacles and rubble. This competi-
tion provides a standard test bed for robots that can autono-
mously explore unknown and unstructured environments.  

 
Fig. 1 A sample arena of the RoboCup RRL competition. 

After participating in the RoboCup RRL competition for 
almost ten years, we focus on increasing the robot autonomy 
level for Urban Search and Rescue (USAR) in recent years. In 
2016, our team NuBot won the championship of the RoboCup 
China Open RRL competition with the ability to explore the 
complex and unknown rescue environment fully autonomous-
ly. 

C. The Contribution of This Paper  

The main contribution of this paper is to provide a suc-
cessful autonomy solution for USAR robots especially in the 
rescue environment filled with uneven terrains with ramps. 

D. The Arrangement of This Paper 



In this paper we present recent advances in USAR robots, 
provide an overview of our autonomous robot system and 
present an efficient control strategy we use. 

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of the robot hardware and soft-
ware of our rescue robot, where Robot Operating System 
(ROS) has been used to build the software. The HectorSLAM 
algorithm and our custom designed LiDAR stabilizer are in-
troduced in Section III. In Section IV, an autonomous explora-
tion approach is discussed and a multi-sensor based controller 
is proposed to drive the robot to follow the trajectory in chal-
lenging terrains with high robustness. Section V presents how 
to detect and localize the simulated victims using thermal 
camera. Afterwards, we assess the robot performance in the 
rescue scenarios of our laboratory and the 2016 RoboCup 
China Open RRL competition. Finally Section VII concludes 
the paper.  

II.  SYSTEM OVERVIEW 

 Many impressive results about the design of the robot 
system for USAR missions have been achieved, and  various 
robots have been developed for USAR tasks. In early years, 
rescue robots were usually teleoperated by human operators. 
With robotic technology advances significantly, the robot’s 
autonomy level has been improved greatly. We also designed 
our rescue robot system to realize fully autonomous USAR. 

A. Hardware 

 Our robot uses a tracked platform, as shown in Fig. 2. 
The tracked robot with front and back sub-tracks (flippers) 
provides effective mobility, and it is the mostly common plat-
form used in the RoboCup RRL competitions and also in the 
real rescue missions.   

 
Fig. 2 NuBot participating the RoboCup China Open 2016 in Hefei. 

 In order to complete the USAR missions, the mobile ro-
bot must be equipped with an onboard computer and various 
sensors for mapping, navigation and victim detection. 
 The robot uses a state-of-the-art industrial grade computer 
from Beckoff. The computer (Intel Core i7)  provides enough 
processing ability to deal with huge data and the robustness 
when traversing challenging terrains. 
 The robot is equipped with a Hokuyo UTM-30LX Light 
Detection And Ranging (LiDAR). The LiDAR is suitable for 

mobile robots because of its low power consumption and 
compact size. The field of view of the scanner is 270o, the 
scanning distance is 30m and the scanning frequency is 40Hz. 
The performance of Hokuyo UTM-30LX was evaluated in 
[2], where the results show that Hokuyo UTM-30LX can be 
used for distance measurement, and the quality of the acquired 
data is almost the same on different surfaces, colors and even 
under different illumination. 
 In order to measure the robot’s pose when exploring in 
the unstructured and uneven terrains, a 6DOF inertial sensor, 
“Xsens MTI-100” has been integrated. MTI-100 is a miniature 
Inertial Measurement Unit (IMU) that outputs yaw angle with 
no drift, and provides a calibrated three-axis acceleration, an-
gular velocity and magnetic field strength. 
 Visual perception is the most important source for victim 
detection. Therefore a pan-tilt-zoom camera is mounted on the 
tracked platform. Besides, a low-cost USB video camera and a 
Thermal Image Optris  PI640 has been employed. The visual 
sensors are fused  to detect and localize victims. 

B. ROS-based Software 

 Robot Operation System (ROS) [3] is used to build the 
software for our rescue robot. It is the most popular robotic 
framework nowadays. It provides open source tools, libraries, 
and drivers for robotics researches and applications. ROS en-
ables researchers to quickly and easily conduct experiments. 
The software architecture of our rescue robot is shown in Fig. 
3. 
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Fig. 3 The software architecture based on ROS. ROS nodes are represented by 
rectangles, topics by arrow-headed and services by diamond-headed lines. 
Services are originated at the service caller. 

III.  2D SLAM WITH ACTIVE LIDAR STABILIZER 

A. 2D SLAM 

The ability to build a map of the unknown environment 
and localize itself, named as SLAM, is one of the most im-
portant abilities for  robots to operate fully autonomously in 
USAR scenarios. Most existing 2D SLAM algorithms are 
based on probabilistic representations. The advantage is the 
robustness to measurement noises and the capability to for-
mally represent uncertainty in the measurement and estimation 
process. Furthermore, most  probabilistic SLAM algorithms 
are built upon  the Bayes rule. HectorSLAM [5] and 
Gmapping [6] are two typical Bayes based methods, and open 
source implementations are available as ROS packages. 



 HectorSLAM is a 2D SLAM system based on robust scan 
matching [5]. This module focused on the real-time estimation 
of the robot movement, making use of LiDARs with high up-
date rate and low measurement noise. The odometry infor-
mation is not required, which gives the possibility to imple-
ment this approach in tracked robots traveling in uneven ter-
rains. The 2D pose estimation is based on the optimization of 
the alignment of beam endpoints with the map obtained so far. 
The endpoints are projected in the actual map where the occu-
pancy probabilities are estimated. Scan matching is solved 
using a Gaussian-Newton approach, which can obtain the rig-
id transformation that best fits the laser beams with the map. 
In addition, a multi-resolution map representation is used to 
avoid getting stuck in the local minima. 
 Gmapping is a widely used SLAM package [6] in ROS. 
This algorithm is based on Rao-Blackwellized Particle Filter 
(PF) . The algorithms based on PF generally requires a large 
number of particles to achieve accurate estimation results, 
which increases the computational load. It combines odometry 
and scan matching  in order to reduce the number of particles. 
 However, in the rescue environment, the odometry is un-
reliable, which makes Gmapping not suitable. Different from 
Gmapping, HectorSLAM relies only on scan matching, which 
is an advantage in USAR tasks. Fig. 4(a) and Fig. 4 (b) show 
the SLAM results of HectorSLAM in the office environment 
and the rescue environment, respectively. The mapping result 
in Fig. 4(b) contains distortions, , which is because the rescue 
environment is unstructured. In the next subsection, we will 
introduce how to deal with this problem. 

 
Fig. 4 The SLAM results of HectorSLAM in the office environment with even 
terrains and the rescue environment with uneven terrains. 

B. Active LiDAR Adjustment 

 Robots for USAR are usually used in unstructured envi-
ronments with uneven terrains. Therefore the sensor data 
might be spurious if the sensors are rigidly coupled to the ro-
bot. The challenge of uneven terrains has been added into the 
RoboCup rescue competition by using 10° and 15° pitch/roll 
ramps since 2007 [4]. 
 One way to overcome these problems is to use a 3D 
LiDAR instead of a 2D LiDAR. The registration of the 3D 
scans would build a exact global map, and the pose of the ro-
bot can also be calculated. However, it spends much more 
time to do the 3D scan registration with the global map than 
the scanning and matching in 2D. 

 As a compromise, we have designed a cheap stabilizer 
with two servos to adjust the orientation of the 2D LiDAR,  
based on the readings from the MTI sensor As a result, the 2D 
LiDAR can be kept on the horizontal plane even when the 
robot is traversing on uneven terrains. The rotation/tilt stabi-
lizer unit mounted on the robot is shown in Fig. 2. Fig. 5 
shows the result of HectorSLAM with LiDAR Stabilizer. 

 
Fig. 5 The SLAM results of HectorSLAM with LiDAR Stabilizer in the office 
environment with even terrains and the rescue environment with uneven ter-
rains. 

IV.  AUTONOMOUS EXPLORATION 

 A fully autonomous USAR robot must explore the rescue 
environment and search  victims autonomously. This problem 
can be separated into three questions: 
 1) Selecting a target point: Where should the robot go 

next? 
 2) Planning a path: Which way should the robot take to 

go to the target? 
 3) Computing the control command: What action should 

the robot do? 

A. Frontier-based Exploration 

 The primary problem of autonomous exploration is: based 
on existing knowledge about the real world, where should the 
robot move to efficiently acquire new information?  

Yamauchi proposed a frontier-based approach in [7] to 
determine the next exploration target. The approach uses the 
occupancy grid. When a grid map has been built, all the grid 
can be divided into three categories: Free, Unknown and Oc-
cupied. The primary idea is as follows: in order to get new 
information, going to a frontier which separates known re-
gions from unknown regions. The frontier here is a cell in the 
occupancy grid which is marked as free but has a neighboring 
unknown cell (Fig. 6) . A segment of adjacent frontiers is con-
sidered as a potential target if it is large enough for the robot 
getting though. If more than one potential target are detected, 
the closest  one is selected. Fig. 7 shows the result of extracted 
frontiers. 

A disadvantage of directly extracting frontier from the 
original map is that the extracted frontier may be close to ob-
stacles. To overcome this problem, the Inflated Obstacle 
method has been utilized. This method will transform the cells 
within a certain distance to obstacles as Occupied, thus the 
frontiers will not be extracted in these areas. Fig. 8 shows the 



result of extracted frontiers in the occupancy grid with inflated 
obstacles. 

 
Fig. 6 Frontier detection. (a) The green grid cell has a neighboring Unknown 
cell, so it is a frontier; (b) The green grid cell has no any neighboring Un-
known cell, so it is not a frontier. 

 
Fig. 7 Occupancy grid and extracted frontier. (a) Black area is Occupied, 
white area is Free and gray area is Unknown;. (b) Red point are detected as 
frontiers. 

 
Fig. 8 Occupancy grid with inflated obstacles and the extracted frontier. In (a), 
green areas are the inflated obstacles. 

 Unknown areas could be occupied or free areas, which 
have not been known by robots. In the narrow rescue envi-
ronment, the probability of the unknown areas being obstacles 
is quite high. Furthermore, the computational complexity of 
path planning will increase as the scale of the built map, so the 
frequency of path planning will not be high for autonomous 
UASR robots. If the robot takes one frontier as the target 
point, and the frequency of path planning is low, or the robot’s 
moving distance to the target is small, the robot may crash 
with unknown obstacles. 

Fig. 9 shows such a example where the robot may be 
stuck. The red point represents the robot’s position, and the 
black curve represents the planned path. In this situation, be-
cause of the low frequency of path planning, the robot will not 
re-plan the path before arriving the target point, so the robot 
may crash with obstacles. The worst result is that the robot 
can not move any more. 

To deal with this problem, we proposed a method named 
as Fake Inflated Obstacle, where those extracted frontiers lo-
cated between free areas and unknown areas are considered as 

obstacles, then these obstacles are inflated, and finally new 
frontiers can be searched between these inflated areas and free 
areas. Using this method, the distances between the target 
point and the actual obstacles are enough for our robot’s safe 
movement. The extracted frontiers from fake inflated obsta-
cles are shown in Fig 10. 

 
Fig. 9 A example of the robot being stuck 

 
Fig. 10 Occupancy grid with fake inflated obstacles and the extracted frontier. 

B. Planning the Optimal Path 

When a target has been selected by the frontier-based 
method, the problem turns into optimal path planning. Javis 
and Byrne [8] proposed the distance transform to find the 
closest way from an arbitrary starting point to a fixed target. 
The distance transform of an occupancy grid calculates the 
cost to reach the target cell for each free cell. The cost be-
tween two cells (without obstacles between them) can be the 
chessboard distance, city block distance, or the Euclidian dis-
tance. After the distance transform has been applied for each 
cell of the grid, the shortest path from any cell to the target 
cell can be searched simply by following the steepest gradient. 
The chessboard distance d of a cell ci,j to target cell ca,b is de-
fined as follows: 

( ) ( ), , , ,( ) ( ) ( ) ( )a b i j a b i jd c x c x c y c y= − + −                 (1) 

The distance transform always chooses the shortest way 
between two cells. But this way is not always desirable for 
robots, because it may lead the robot crash against the wall or 
go through a narrow passage. In [9] and [10], a security com-
ponent has been added to the distance transform, i.e., an ob-
stacle transform which calculates the distance to the closest 
obstacle for each cell. The path transform Φ of a cell c to 
reach the target cell cg is then defined as follows: 

( , c ) min (C) ( )
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c i

g danger i
C c C

c l c c
χ

α
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with 
cg

c
C χ∈  is the set of all possible paths from c to cg, l(C) 

the length of the path C, cdanger(ci) the cost function for the 



“discomfort” of entering cell ci, and α  a weighting factor ≥ 0. 
The length l(C) of the path C can be calculated incrementally: 

1

0 1
0
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n i i
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−

+
=

= =                        (3) 

where d denotes the distance between two cells (e. g. the 
chessboard distance).  

The “discomfort” cost cdanger of a cell is calculated based 
on the obstacle transform of this cell. For distances to the wall 
that are smaller than half of the size of the robot, the cost 
should be very high. Zelinsky’s choice for such a cost func-
tion is given in (4). 

( )3
( ( ) , if ( )

( )
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i i
danger i

X c c X
c c

 − Ω    Ω <== 


          (4) 

The constant X determines the minimum distance to obstacles, 
which depends on the size of the robot, the accuracy of the 
sensors, and the map. The α  in (2) determines how far the 
path keeps away from obstacles. 

C. Controller 

 Based on the SLAM and exploration planning algorithms 
mentioned above, the robot can build the 2D grid map and 
plan a path to the next frontier. Ideally, the robot can explore 
the environment autonomously after integrating a simple con-
troller to compute the commands to drive itself. However, 
different from virtual simulation environment or ideally in-
door scenarios, real disaster sites are filled with unstructured 
terrains. Coupled with the inaccuracy of tracked vehicles, it is 
quite challenging to realize accurate control of the robot to 
follow the exploration path. A simple controller, which direct-
ly produces the velocity command by calculating the biases of 
current position and orientation of the robot with the  target, 
can not perform well in real world experiments. Therefore, we 
propose a novel controller combining the exploration planer 
and multi-sensor information to overcome the influence of 
challenging terrains. The inputs of the controller are LiDAR 
data, IMU data, the current position and orientation of the 
robot and the target. 
 Firstly, we propose a piece-wise method to evaluate 
whether the robot has reached the target point: 
1) If the robot is exactly close to the target point, the target 

is reached. The condition of target reached is as follow: 

2
min

22x dy ≤Δ+Δ ; 

2) If the robot is within a certain distance to the target point, 
and the robot’s current orientation is within a certain an-
gle of the target orientation, the goal is reached. The con-
dition of target reached is as follow: 

θα ≤Δ≤Δ+Δ anddyx 222  

where xΔ and yΔ denote the biases of position between the 

robot and the target. mind and d are the tolerances of transla-

tion, and d<mind . αΔ is the bias of angle between the robot 

and the target and θ is the tolerance of orientation. 
 This kind of evaluation can make the robot avoid wasting 
time to move to very close target points. The robot’s velocity 
commands can be generated by computing the bias of the ro-
bot pose and the target point. 
 Secondly, the point cloud data acquired by the LiDAR are 
used to compute the “acting force” of the obstacles to the ro-
bot. The ideal case is that the robot can keep such a distance to 
the obstacles that the robot will not crash with the obstacles, 
and at the same time, the robot can detect and recognize the 
landmark information located on the obstacles. Therefore, the 
“acting force” of each point to the robot is computed accord-
ing to the following principle: 

1) the robot is encouraged to stay away from obstacles at 
a distance of dopt and  

2) the robot will not get closer than dmin.  
 The acting force is then computed as follows: 

( ) ( )
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 This force is used to compensate the robot’s velocity 
commands in the controller, so the robot will be kept at a cer-
tain distance to the obstacles. Then the acquired IMU infor-
mation such as the robot’s roll and pitch angles can be used to 
evaluate the terrains. According to the robot’s roll and pitch 
angles, we design the following strategy to improve the ro-
bustness in traversing the uneven terrains: 
1) When the robot is on the uphill terrain, the robot’s linear 

velocity commands are added by ( )αcos/'
xx vv =  to 

make sure that the robot can traverse the uphill terrain 

successfully. Where '
xv and xv denote the forward direc-

tion linear velocity command, and α is the angle of pitch. 
2) When the robot is turning on the tilted terrain, the robot’s 

angular velocity commands are added by 

)cos(/'
z βωω z=  to make sure that the robot can make a 

turn on the tilted ramp reliably. Where '
zω and zω denote 

the angular velocity command, and β  is the angle of roll. 

3) When the angle of roll or pitch is too large, which means 
that the robot may turnover, the robot should move to the 
opposite direction. 

 The experimental results show that using this kind of 
multi-sensor based controller, the exploration efficiency and 
robustness can be improved, and the robot can explore the full 
rescue environment of the 2016 RoboCup China Open RRL 
competition, as shown in the accompanying video. 

V.  VICTIM DETECTION AND LOCALIZATION 

 Reliable detection of human victims in unstructured post-
disaster environments is a key issue for USAR robots, which 
is challenging in the rescue environment with low illumina-



tion, dust and smoke when using normal visible light camera. 
Therefore we use a thermal camera (Optris P640) to recognize 
the simulated victims autonomously using a blob detection 
algorithm. After segmenting the thermal image with a thresh-
old like 36o, the connected warm regions can be regarded as 
victims. 
 After detecting the victim successfully, the position of the 
victim should be estimated on the built map. The image coor-
dinate of the victim can be used to evaluate the victim’s direc-
tion in the camera coordinate system. Because the victim 
should be located on the obstacles, using the victim’s direction 
and the camera’s orientation, the victim’s position can be es-
timated by searching the nearest obstacle on the built map 
along the victim’s direction. 

 
Fig. 11 The result of victim detection and localization, where the found victim 
is marked by red dot in the map. 

VI.  EXPERIMENTAL RESULTS 

The RoboCup RRL competition provides a systematic 
benchmark for testing and evaluating teleoperated and auton-
omous USAR robots in a simulated post-disaster environment. 
We present the results achieved when participating the 
RoboCup China Open 2016. In this competition we won the 
championship based on exploring the rescue environment au-
tonomously. 

Figure 12 shows the map of explored arena and the mark-
ing of the found victims and recognized QR-codes on the 
map. It should be noted that the robot successfully found 5 
victims autonomously and the total number of victims was 8 
in the final competition. The number of the recognized QR-
codes correlates with the fraction of the arena that was ex-
plored by the robot during the competition. Videos of the final 
competition and experiments are available on our website: 

 http://www.trustie.net/organizations/23/videos 

VII.  CONCLUSION 

Autonomous capabilities of rescue robots in USAR tasks 
offer an exciting prospect of rescue operations. This paper 
describes the approaches and technical achievements in de-
signing the fully autonomous USAR robot system of the Team 
NuBot, which won the 2016 RoboCup China Open RRL 
championship. 

 
Fig. 12 The autonomous exploration results of our rescue robot participating 
the 2016 RoboCup China Open RRL. The starting pose of the robot is marked 
by yellow arrows, the detected victims marked by red dot, and the recognized 
QR-codes marked by blue dot. In the final competition the robot discovered 5 
victims correctly and autonomously. 
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